光伏發(fā)電是集開(kāi)發(fā)可再生能源、改善生態(tài)環(huán)境于一體的重大課題,有巨大的經(jīng)濟(jì)、社會(huì)效益和學(xué)術(shù)研究?jī)r(jià)值。 本文首先介紹了3kW光伏并網(wǎng)逆變器系統(tǒng)的組成和結(jié)構(gòu)。3kW光伏并網(wǎng)逆變器采用兩級(jí)式結(jié)構(gòu),主電路由前級(jí)Boost變換器和后級(jí)的單相逆變橋組成。控制部分以DSP(DSP56F803)為核心,實(shí)現(xiàn)了光伏陣列最大功率點(diǎn)的跟蹤控制,以及產(chǎn)生與電網(wǎng)壓同頻同相的正弦電流,實(shí)現(xiàn)并網(wǎng)的功能。本文重點(diǎn)對(duì)逆變器系統(tǒng)的最大功率點(diǎn)跟蹤(MPPT)控制進(jìn)行研究。 針對(duì)基于外特性建立的光伏陣列模型雖然簡(jiǎn)單、參數(shù)易解,但精度低的問(wèn)題,本文建立了基于物理特性的光伏陣列模型,并考慮光照強(qiáng)度、環(huán)境溫度對(duì)光伏陣列的影響,模型參數(shù)與實(shí)際參數(shù)嚴(yán)格對(duì)應(yīng)。將幾種最大功率點(diǎn)跟蹤算法應(yīng)用于所建立的光伏陣列模型使用MATLAB進(jìn)行仿真,分析仿真結(jié)果,比較各種算法的優(yōu)缺點(diǎn),總結(jié)出每種算法所適用的環(huán)境,并給出了最大功率點(diǎn)跟蹤控制在并網(wǎng)逆變器系統(tǒng)的實(shí)現(xiàn)策略。 設(shè)計(jì)了適用于額定功率為100W的光伏陣列最大功率點(diǎn)跟蹤的Boost電路,分別給出了利用PIC單片機(jī)16F873實(shí)現(xiàn)擾動(dòng)觀察法和增量電導(dǎo)法的程序流程圖,實(shí)現(xiàn)了這兩種算法控制下光伏陣列的最大功率點(diǎn)跟蹤,并分析了兩種算法的跟蹤性能。
標(biāo)簽: 3kW 光伏并網(wǎng) 逆變器
上傳時(shí)間: 2013-04-24
上傳用戶(hù):fudong911
太陽(yáng)能資源具有可持續(xù)發(fā)展和綠色能源兩大優(yōu)勢(shì),太陽(yáng)能發(fā)電作為一種太陽(yáng)能資源的利用方式正逐漸受到各國(guó)重視,其中,光伏并網(wǎng)發(fā)電系統(tǒng)最具理論意義和實(shí)用價(jià)值。并網(wǎng)逆變器是光伏并網(wǎng)發(fā)電系統(tǒng)的關(guān)鍵環(huán)節(jié),其硬件研制和控制算法研究是光伏并網(wǎng)領(lǐng)域的熱點(diǎn)課題。本論文在充分研究近年來(lái)光伏發(fā)電領(lǐng)域重要研究成果的基礎(chǔ)上,設(shè)計(jì)了一個(gè)5kW的三相光伏并網(wǎng)逆變器,并在硬件設(shè)計(jì)、控制算法研究和仿真方面進(jìn)行了深入探討。 該三相光伏并網(wǎng)逆變器由前級(jí)的DC-DC直流變換電路和后級(jí)的DC-AC三相并網(wǎng)逆變電路組成。其中,DC-DC電路采用多支路并聯(lián)結(jié)構(gòu),各支路均采用獨(dú)立的最大功率點(diǎn)跟蹤控制,解決了各支路間功率不匹配問(wèn)題,可應(yīng)用于光伏與建筑一體化系統(tǒng)中;DC-AC電路采用三相PWM整流器電路結(jié)構(gòu)和空間電壓矢量控制方法,提高了直流電壓利用率,減小了注入電網(wǎng)的諧波。本文在分析三相光伏并網(wǎng)逆變器電路工作原理和控制算法的基礎(chǔ)上,采用計(jì)算機(jī)仿真驗(yàn)證了控制算法的可行性,并討論了在不同電壓范圍內(nèi),三相光伏并網(wǎng)逆變器的工作特點(diǎn)及相應(yīng)控制算法。 本文從檢測(cè)與保護(hù)電路設(shè)計(jì),電源電路設(shè)計(jì),主電路參數(shù)選擇等方面討論了該逆變器的硬件設(shè)計(jì)方法,并進(jìn)行仿真、調(diào)試,驗(yàn)證了模擬電路設(shè)計(jì)的正確性,為類(lèi)似結(jié)構(gòu)的光伏并網(wǎng)逆變器提供了硬件設(shè)計(jì)參考。
標(biāo)簽: 5kW 光伏并網(wǎng) 逆變器
上傳時(shí)間: 2013-05-18
上傳用戶(hù):william345
現(xiàn)如今,逆變器的脈沖寬度調(diào)制(PWM)技術(shù)作為一種最常見(jiàn)的調(diào)制方式在交流傳動(dòng)系統(tǒng)中廣泛應(yīng)用。采用PWM調(diào)制技術(shù)的最終目的在于追求逆變器輸出電壓、電流波形更接近正弦從而進(jìn)一步控制負(fù)載電機(jī)的磁通正弦化。為了達(dá)到這些目的,很多種基于PWM原理的調(diào)制方法被相繼提出并應(yīng)用。 在鐵道牽引調(diào)速系統(tǒng)中,逆變裝置具有調(diào)速范圍寬,輸出頻率變化快等特點(diǎn),而逆變器本身器件的開(kāi)關(guān)頻率又不是很高。這種情況下,分段同步調(diào)制模式的使用有效地改善了變頻器的輸出,達(dá)到了減少諧波的目的。本文圍繞分段同步調(diào)制在交流牽引傳動(dòng)系統(tǒng)中的應(yīng)用進(jìn)行研究,主要目的在于解決該調(diào)制模式應(yīng)用中存在的切換點(diǎn)選擇、切換震蕩沖擊等問(wèn)題。文章詳細(xì)討論了分段調(diào)制模式下載波比和載波比切換點(diǎn)選取的原則,重點(diǎn)分析了分段同步調(diào)制模式下載波比切換點(diǎn)沖擊電壓的產(chǎn)生原因和危害,提出了改善電壓電流沖擊的方法,并在搭建的實(shí)驗(yàn)平臺(tái)上驗(yàn)證了理論分析的正確性。此外,本文還對(duì)列車(chē)高速時(shí)載波比極低的極限情況下分段同步調(diào)制對(duì)變頻器輸出交流電壓和直流回流電流諧波的改善情況進(jìn)行了理論推導(dǎo)和仿真分析。 論文搭建了用于調(diào)制實(shí)驗(yàn)的3.7kW小功率電機(jī)實(shí)驗(yàn)平臺(tái),在開(kāi)環(huán)的VVVF調(diào)速系統(tǒng)中進(jìn)行了分段同步調(diào)制載波比切換實(shí)驗(yàn);在Matlab/Simulink環(huán)境下搭建了分段同步調(diào)制模式下的電機(jī)牽引模型,進(jìn)行了分段同步調(diào)制載波比切換仿真;實(shí)驗(yàn)和仿真結(jié)果表明,文章所提出的方法很好地完成了分段同步算法且有效抑制了可能發(fā)生的沖擊,所得結(jié)果驗(yàn)證了理論分析的正確性。
上傳時(shí)間: 2013-08-04
上傳用戶(hù):hphh
三相異步電動(dòng)機(jī)結(jié)構(gòu)簡(jiǎn)單、價(jià)格便宜以及維修方便等優(yōu)點(diǎn),被廣泛應(yīng)用于工農(nóng)業(yè)生產(chǎn)和日常生活等領(lǐng)域。隨著各行各業(yè)中生產(chǎn)機(jī)械的不斷更新和發(fā)展,其中對(duì)電動(dòng)機(jī)的起動(dòng)性能要求越來(lái)越高。傳統(tǒng)的電機(jī)起動(dòng)方式其局限性,不能有效減少起動(dòng)時(shí)對(duì)電網(wǎng)的大電流沖擊,已越來(lái)越不能適應(yīng)現(xiàn)代生產(chǎn)發(fā)展的要求。針對(duì)上述問(wèn)題,本文提出了一種以TMS320LF2407 DSP為核心的高性能數(shù)字式電機(jī)軟起動(dòng)器。相比于傳統(tǒng)的起動(dòng)器,它能顯著的改善電機(jī)的起動(dòng)性能。 由于軟起動(dòng)器所具有的優(yōu)點(diǎn)及其它控制設(shè)備無(wú)法比擬的性?xún)r(jià)比,使得軟起動(dòng)器的應(yīng)用前景十分廣闊。加上現(xiàn)在國(guó)內(nèi)電力供應(yīng)緊張,軟起動(dòng)器在節(jié)能方面有突出的表現(xiàn)。因此軟起動(dòng)器擁有十分廣闊的市場(chǎng)。但是在國(guó)內(nèi)軟起動(dòng)器市場(chǎng),以國(guó)外產(chǎn)品居多。國(guó)外產(chǎn)品質(zhì)量高,但是價(jià)格昂貴,性?xún)r(jià)比不高,在國(guó)內(nèi)徹底普及有困難。針對(duì)該現(xiàn)狀,本文設(shè)計(jì)出一種以DSP-TMS320LF2407為核心低價(jià)格,高性能的異步電動(dòng)機(jī)軟起動(dòng)器。 本軟起動(dòng)器采用品閘管調(diào)壓方式,采用模塊化設(shè)計(jì)思想,通過(guò)改變晶閘管的觸發(fā)角來(lái)實(shí)現(xiàn)對(duì)定子兩端的電壓的調(diào)節(jié)。從而實(shí)現(xiàn)了異步電動(dòng)機(jī)電壓斜坡起動(dòng)、限流起動(dòng)、軟停車(chē)等功能。 本文利用MATLAB搭建了軟起動(dòng)器系統(tǒng)的仿真模型,對(duì)軟起動(dòng)的控制方式進(jìn)行了仿真研究。仿真結(jié)果表明該軟起動(dòng)器系統(tǒng)可以有效地減小異步電動(dòng)機(jī)起動(dòng)時(shí)對(duì)電網(wǎng)的沖擊。本文同時(shí)也闡述了晶閘管調(diào)壓電路及軟起動(dòng)器主電路的工作原理、軟起動(dòng)器的硬件結(jié)構(gòu)和功能以及軟件設(shè)計(jì)。該軟起動(dòng)器操作方便簡(jiǎn)單,智能化程度高,能夠及時(shí)跟隨電機(jī)負(fù)載的變化,使電機(jī)順利起動(dòng)。經(jīng)過(guò)實(shí)驗(yàn)調(diào)試,基本上達(dá)到了改善鼠籠式異步電動(dòng)機(jī)起動(dòng)性能的要求,在保障降低異步電動(dòng)機(jī)起動(dòng)電流的前提下,使電機(jī)能夠平穩(wěn)可靠起動(dòng)。
標(biāo)簽: DSP 三相異步電動(dòng)機(jī) 軟起動(dòng)器
上傳時(shí)間: 2013-04-24
上傳用戶(hù):lht618
MSP430定時(shí)器的使用,有詳細(xì)的例子程序和講解,是新手學(xué)習(xí)的好資料哦
上傳時(shí)間: 2013-07-08
上傳用戶(hù):西伯利亞狼
控制器局域網(wǎng)(CAN)最初是由德國(guó)BOSCH公司為汽車(chē)的監(jiān)測(cè)、控制系統(tǒng)設(shè)計(jì)的。它是一種有效的支持分布式控制或者實(shí)時(shí)控制的串行通信網(wǎng)絡(luò)。由于其具有多主機(jī)、高性能以及高可靠性,CAN總線已經(jīng)廣泛應(yīng)用于汽車(chē)電子控制、過(guò)程控制、機(jī)械工業(yè)、紡織機(jī)械、機(jī)器人、數(shù)控機(jī)床、醫(yī)療器械以及傳感器等領(lǐng)域。CAN總線已經(jīng)形成國(guó)際標(biāo)準(zhǔn),并已被公認(rèn)為幾種最有前途的現(xiàn)場(chǎng)總線之一。 另一方面,隨著電動(dòng)車(chē)的技術(shù)的不斷發(fā)展,電動(dòng)車(chē)已經(jīng)開(kāi)始邁向了市場(chǎng)普及的道路。對(duì)于電動(dòng)車(chē)電池的管理和維護(hù)越來(lái)越成為電動(dòng)車(chē)發(fā)展的重點(diǎn)之一。由于CAN具有抗干擾性強(qiáng)、連接簡(jiǎn)單、無(wú)主通信等特點(diǎn),非常適合用來(lái)實(shí)現(xiàn)實(shí)時(shí)數(shù)據(jù)的采集和傳輸。因此,本文利用CAN總線為基礎(chǔ)設(shè)計(jì)了一個(gè)電池實(shí)時(shí)數(shù)據(jù)采集與管理系統(tǒng),經(jīng)分析、設(shè)計(jì)、編程和調(diào)試,在實(shí)際應(yīng)用中得以實(shí)現(xiàn)。 該系統(tǒng)主要包括數(shù)據(jù)采集層,數(shù)據(jù)傳輸層和用戶(hù)管理層三個(gè)部分。數(shù)據(jù)采集層的主要任務(wù)是電池實(shí)時(shí)數(shù)據(jù)的采集和發(fā)送;數(shù)據(jù)傳輸層的主要功能是通過(guò)CAN總線接收數(shù)據(jù)采集層發(fā)送的實(shí)時(shí)數(shù)據(jù),并將其轉(zhuǎn)換成RS232串口協(xié)議發(fā)送到上位機(jī);用戶(hù)管理層的主要功能是通過(guò)串口接收數(shù)據(jù),實(shí)時(shí)顯示,存儲(chǔ)和分析。 論文完成的主要工作有: (1) 通過(guò)對(duì)系統(tǒng)需求的分析,將整個(gè)系統(tǒng)分為三個(gè)獨(dú)立的層,分別進(jìn)行了軟硬件設(shè)計(jì),實(shí)現(xiàn)了系統(tǒng)的模塊化,增強(qiáng)了系統(tǒng)的應(yīng)用性; (2) 詳細(xì)的研究了CAN2.0B協(xié)議和SAE J1939協(xié)議,并在此基礎(chǔ)上,編寫(xiě)了適合本設(shè)計(jì)的通訊協(xié)議; (3) 深入研究了MC9S12DG128芯片的硬件結(jié)構(gòu)和軟件設(shè)計(jì)方法; 本課題的創(chuàng)新點(diǎn)在于利用目前汽車(chē)工業(yè)廣泛采用的CAN總線協(xié)議,設(shè)計(jì)了一套簡(jiǎn)單,高效,穩(wěn)定的電池?cái)?shù)據(jù)采集與管理系統(tǒng),并在實(shí)際中得以應(yīng)用。在系統(tǒng)設(shè)計(jì)過(guò)程中將整個(gè)系統(tǒng)分為3個(gè)層,大大提升了系統(tǒng)的模塊化水平,有利于系統(tǒng)的擴(kuò)展和維護(hù)。
上傳時(shí)間: 2013-07-07
上傳用戶(hù):1417818867
在實(shí)際工作現(xiàn)場(chǎng),常常需要在一個(gè)非常惡劣的環(huán)境中進(jìn)行通話(huà),隨著CAN總線在工業(yè)生產(chǎn)的應(yīng)用越來(lái)越廣泛,想到了把CAN總線應(yīng)用于電話(huà)通信上來(lái).CAN總線具有極高的總線利用率,這有可能使得我們只需要用兩根CAN總線,就可以把需要通話(huà)的節(jié)點(diǎn)電話(huà)連接起來(lái),從而實(shí)現(xiàn)語(yǔ)音通信. 本文主要論述了基于CAN總線的多節(jié)點(diǎn)語(yǔ)音通信系統(tǒng)設(shè)計(jì).該系統(tǒng)使用MC14LC5480作為語(yǔ)音采集編解碼器,AT90CAN128作為處理器,使用處理器自帶的CAN模塊實(shí)現(xiàn)多個(gè)CAN節(jié)點(diǎn)間的通信,最終達(dá)到實(shí)現(xiàn)多節(jié)點(diǎn)間語(yǔ)音通信的功能. 本文的前半部分介紹了CAN總線技術(shù)和語(yǔ)音信號(hào)的數(shù)字處理技術(shù),評(píng)價(jià)了用CAN總線傳輸語(yǔ)音信號(hào)的優(yōu)點(diǎn).本文后半部分詳細(xì)介紹了該系統(tǒng)的硬件結(jié)構(gòu)和軟件設(shè)計(jì),通過(guò)分析系統(tǒng)所涉及的芯片對(duì)該系統(tǒng)的各個(gè)功能模塊做了詳細(xì)的說(shuō)明,包括語(yǔ)音編解碼電路,語(yǔ)音數(shù)字信號(hào)處理電路,CAN總線傳輸電路等.通過(guò)該系統(tǒng),能夠?qū)崿F(xiàn)在實(shí)驗(yàn)室條件下多個(gè)CAN節(jié)點(diǎn)間的語(yǔ)音通信.
標(biāo)簽: CAN 總線 節(jié)點(diǎn)
上傳時(shí)間: 2013-04-24
上傳用戶(hù):mingaili888
本書(shū)主要闡述設(shè)計(jì)射頻與微波功率放大器所需的理論、方法、設(shè)計(jì)技巧,以及將分析計(jì)算與計(jì)算機(jī)輔助設(shè)計(jì)相結(jié)合的優(yōu)化設(shè)計(jì)方法。這些方法提高了設(shè)計(jì)效率,縮短了設(shè)計(jì)周期。本書(shū)內(nèi)容覆蓋非線性電路設(shè)計(jì)方法、非線性主動(dòng)設(shè)備建模、阻抗匹配、功率合成器、阻抗變換器、定向耦合器、高效率的功率放大器設(shè)計(jì)、寬帶功率放大器及通信系統(tǒng)中的功率放大器設(shè)計(jì)。 本書(shū)適合從事射頻與微波動(dòng)功率放大器設(shè)計(jì)的工程師、研究人員及高校相關(guān)專(zhuān)業(yè)的師生閱讀。 作者簡(jiǎn)介 Andrei Grebennikov是M/A—COM TYCO電子部門(mén)首席理論設(shè)計(jì)工程師,他曾經(jīng)任教于澳大利亞Linz大學(xué)、新加坡微電子學(xué)院、莫斯科通信和信息技術(shù)大學(xué)。他目前正在講授研究班課程,在該班上,本書(shū)作為國(guó)際微波年會(huì)論文集。 目錄 第1章 雙口網(wǎng)絡(luò)參數(shù) 1.1 傳統(tǒng)的網(wǎng)絡(luò)參數(shù) 1.2 散射參數(shù) 1.3 雙口網(wǎng)絡(luò)參數(shù)間轉(zhuǎn)換 1.4 雙口網(wǎng)絡(luò)的互相連接 1.5 實(shí)際的雙口電路 1.5.1 單元件網(wǎng)絡(luò) 1.5.2 π形和T形網(wǎng)絡(luò) 1.6 具有公共端口的三口網(wǎng)絡(luò) 1.7 傳輸線 參考文獻(xiàn) 第2章 非線性電路設(shè)計(jì)方法 2.1 頻域分析 2.1.1 三角恒等式法 2.1.2 分段線性近似法 2.1.3 貝塞爾函數(shù)法 2.2 時(shí)域分析 2.3 NewtOn.Raphscm算法 2.4 準(zhǔn)線性法 2.5 諧波平衡法 參考文獻(xiàn) 第3章 非線性有源器件模型 3.1 功率MOSFET管 3.1.1 小信號(hào)等效電路 3.1.2 等效電路元件的確定 3.1.3 非線性I—V模型 3.1.4 非線性C.V模型 3.1.5 電荷守恒 3.1.6 柵一源電阻 3.1.7 溫度依賴(lài)性 3.2 GaAs MESFET和HEMT管 3.2.1 小信號(hào)等效電路 3.2.2 等效電路元件的確定 3.2.3 CIJrtice平方非線性模型 3.2.4 Curtice.Ettenberg立方非線性模型 3.2.5 Materka—Kacprzak非線性模型 3.2.6 Raytheon(Statz等)非線性模型 3.2.7 rrriQuint非線性模型 3.2.8 Chalmers(Angek)v)非線性模型 3.2.9 IAF(Bemth)非線性模型 3.2.10 模型選擇 3.3 BJT和HBT汀管 3.3.1 小信號(hào)等效電路 3.3.2 等效電路中元件的確定 3.3.3 本征z形電路與T形電路拓?fù)渲g的等效互換 3.3.4 非線性雙極器件模型 參考文獻(xiàn) 第4章 阻抗匹配 4.1 主要原理 4.2 Smith圓圖 4.3 集中參數(shù)的匹配 4.3.1 雙極UHF功率放大器 4.3.2 M0SFET VHF高功率放大器 4.4 使用傳輸線匹配 4.4.1 窄帶功率放大器設(shè)計(jì) 4.4.2 寬帶高功率放大器設(shè)計(jì) 4.5 傳輸線類(lèi)型 4.5.1 同軸線 4.5.2 帶狀線 4.5.3 微帶線 4.5.4 槽線 4.5.5 共面波導(dǎo) 參考文獻(xiàn) 第5章 功率合成器、阻抗變換器和定向耦合器 5.1 基本特性 5.2 三口網(wǎng)絡(luò) 5.3 四口網(wǎng)絡(luò) 5.4 同軸電纜變換器和合成器 5.5 wilkinson功率分配器 5.6 微波混合橋 5.7 耦合線定向耦合器 參考文獻(xiàn) 第6章 功率放大器設(shè)計(jì)基礎(chǔ) 6.1 主要特性 6.2 增益和穩(wěn)定性 6.3 穩(wěn)定電路技術(shù) 6.3.1 BJT潛在不穩(wěn)定的頻域 6.3.2 MOSFET潛在不穩(wěn)定的頻域 6.3.3 一些穩(wěn)定電路的例子 6.4 線性度 6.5 基本的工作類(lèi)別:A、AB、B和C類(lèi) 6.6 直流偏置 6.7 推挽放大器 6.8 RF和微波功率放大器的實(shí)際外形 參考文獻(xiàn) 第7章 高效率功率放大器設(shè)計(jì) 7.1 B類(lèi)過(guò)激勵(lì) 7.2 F類(lèi)電路設(shè)計(jì) 7.3 逆F類(lèi) 7.4 具有并聯(lián)電容的E類(lèi) 7.5 具有并聯(lián)電路的E類(lèi) 7.6 具有傳輸線的E類(lèi) 7.7 寬帶E類(lèi)電路設(shè)計(jì) 7.8 實(shí)際的高效率RF和微波功率放大器 參考文獻(xiàn) 第8章 寬帶功率放大器 8.1 Bode—Fan0準(zhǔn)則 8.2 具有集中元件的匹配網(wǎng)絡(luò) 8.3 使用混合集中和分布元件的匹配網(wǎng)絡(luò) 8.4 具有傳輸線的匹配網(wǎng)絡(luò) 8.5 有耗匹配網(wǎng)絡(luò) 8.6 實(shí)際設(shè)計(jì)一瞥 參考文獻(xiàn) 第9章 通信系統(tǒng)中的功率放大器設(shè)計(jì) 9.1 Kahn包絡(luò)分離和恢復(fù)技術(shù) 9.2 包絡(luò)跟蹤 9.3 異相功率放大器 9.4 Doherty功率放大器方案 9.5 開(kāi)關(guān)模式和雙途徑功率放大器 9.6 前饋線性化技術(shù) 9.7 預(yù)失真線性化技術(shù) 9.8 手持機(jī)應(yīng)用的單片cMOS和HBT功率放大器 參考文獻(xiàn)
標(biāo)簽: 射頻 微波功率 放大器設(shè)計(jì)
上傳時(shí)間: 2013-04-24
上傳用戶(hù):W51631
在低功率應(yīng)用領(lǐng)域中,為了降低成本,單級(jí)功率因數(shù)校正(PFC)技術(shù)越來(lái)越受到人們的關(guān)注。單級(jí)PFC技術(shù)是把PFC變換器和DC/DC變換器結(jié)合在一起,共用一個(gè)開(kāi)關(guān)管和一套控制電路,同時(shí)提高功率因數(shù)和對(duì)輸出電壓進(jìn)行快速調(diào)節(jié)。本文針對(duì)單級(jí)PFC技術(shù)進(jìn)行了較詳細(xì)的分析。首先研究了基本Boost型單級(jí)PFC變換器,詳細(xì)分析了其工作原理和特性,指出在現(xiàn)有的單級(jí)PFC變換器中,必須解決兩個(gè)問(wèn)題,即如何提高變換器的效率和控制中間儲(chǔ)能電容電壓在450V以下。同時(shí)分析了Boost型單級(jí)PFC變換器的三端和兩端拓?fù)浣Y(jié)構(gòu),并討論了兩者之間的聯(lián)系。接著引用了直接功率傳遞原理(DPT),研究了一種新型的可實(shí)現(xiàn)直接功率傳遞的單級(jí)PFC變換器。詳細(xì)分析了該變換器的工作原理和特性。該變換器在引入直接功率傳遞原理的基礎(chǔ)上,相對(duì)于一般單級(jí)PFC變換器來(lái)說(shuō),具有更高的效率和良好的功率因數(shù)校正效果。同時(shí)可以將單級(jí)PFC變換器中間儲(chǔ)能電容電壓的值限制在450V以下。最后,本文用仿真分析驗(yàn)證了理論的正確性,證明了這種新型的單級(jí)PFC變換器比一般的單級(jí)PFC變換器性能更優(yōu)越。
標(biāo)簽: ACDC 單級(jí)功率 因數(shù)校正
上傳時(shí)間: 2013-05-19
上傳用戶(hù):shenglei_353
隨著電力電子技術(shù)的迅速發(fā)展,雙向DC/DC變換器的應(yīng)用日益廣泛。尤其是軟開(kāi)關(guān)技術(shù)的出現(xiàn),使雙向DC/DC變換器不斷朝著高效化、小型化、高頻化和高性能化的方向發(fā)展,軟開(kāi)關(guān)技術(shù)的應(yīng)用可以降低雙向DC/DC變換器的開(kāi)關(guān)損耗,提高變換器的工作效率,為變換器的高頻化提供可能性,從而減小變換器的體積,提高變換器的動(dòng)態(tài)性能。雙向DC/DC變換器在直流不停電電源系統(tǒng)、航空電源系統(tǒng)、電動(dòng)汽車(chē)等車(chē)載電源系統(tǒng)、直流功率放大器以及蓄電池儲(chǔ)能等場(chǎng)合都得到了廣泛的應(yīng)用。 本論文首先在研究硬開(kāi)關(guān)的缺陷上,提出軟開(kāi)關(guān)技術(shù);然后在研究雙向DC/DC變換器的基本工作原理的基礎(chǔ)上,對(duì)雙向DC/DC變換器的應(yīng)用及軟開(kāi)關(guān)雙向DC/DC變換器的幾種拓?fù)浣Y(jié)構(gòu)進(jìn)一步闡述;把軟開(kāi)關(guān)技術(shù)和雙向DC/DC變換器技術(shù)有機(jī)地結(jié)合在一起,提出一種新型的雙向DC/DC變換器的拓?fù)浣Y(jié)構(gòu)。該雙向DC/DC變換器的降壓變換電路采用移相控制ZVSPWMDC/DC變換器;升壓變換電路采用Boost升壓和推挽式升壓兩種變換器相結(jié)合的兩級(jí)升壓的新型變換器。 在分別對(duì)移相控制ZVSPWMDC/DC變換器和Boost推挽式DC/DC變換器的工作原理進(jìn)行分析研究的基礎(chǔ)上,使用PSpice9.2計(jì)算機(jī)仿真軟件對(duì)變換器的主電路進(jìn)行仿真和分析,驗(yàn)證該新型雙向DC/DC變換器的拓?fù)浣Y(jié)構(gòu)設(shè)計(jì)的正確性和可行性。
標(biāo)簽: DCDC PWM 軟開(kāi)關(guān)
上傳時(shí)間: 2013-04-24
上傳用戶(hù):2525775
蟲(chóng)蟲(chóng)下載站版權(quán)所有 京ICP備2021023401號(hào)-1