亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

漏磁

  • HAL58高靈敏度單極霍爾開關電路

    HAL581高靈敏度霍爾開關傳感器 SOT-23封裝 TO-92UA直插高溫霍爾傳感器 HAL581單極性霍爾開關是HALLWEE出品,由霍爾微電子提供。HAL581單極性霍爾開關是一款基于混合信號COMS技術的單極霍爾效應傳感器IC。這款IC采用了先進的斬波穩定技術,因而能夠提供準確而穩定的磁開關點。但從它的設計、規格和性能來看,HAL58單極性霍爾開關特別適合應用于固態開關。0755-25910727 HAL58霍爾開關的工作電壓:2.5V-24V 工作環境溫度:-65-150度[霍爾微電子] 消耗電流3MA

    標簽: HAL 58 高靈敏度 單極

    上傳時間: 2013-11-04

    上傳用戶:liangliang123

  • 硬盤FAT文件系統原理

    硬盤存儲數據是根據電、磁轉換原理實現的。硬盤由一個或幾個表面鍍有磁性物質的金屬或玻璃等物質盤片以及盤片兩面所安裝的磁頭和相應的控制電路組成(圖1),其中盤片和磁頭密封在無塵的金屬殼中。     硬盤工作時,盤片以設計轉速高速旋轉,設置在盤片表面的磁頭則在電路控制下徑向移動到指定位置然后將數據存儲或讀取出來。當系統向硬盤寫入數據時,磁頭中“寫數據”電流產生磁場使盤片表面磁性物質狀態發生改變,并在寫電流磁場消失后仍能保持,這樣數據就存儲下來了;當系統從硬盤中讀數據時,磁頭經過盤片指定區域,盤片表面磁場使磁頭產生感應電流或線圈阻抗產生變化,經相關電路處理后還原成數據。因此只要能將盤片表面處理得更平滑、磁頭設計得更精密以及盡量提高盤片旋轉速度,就能造出容量更大、讀寫數據速度更快的硬盤。這是因為盤片表面處理越平、轉速越快就能越使磁頭離盤片表面越近,提高讀、寫靈敏度和速度;磁頭設計越小越精密就能使磁頭在盤片上占用空間越小,使磁頭在一張盤片上建立更多的磁道以存儲更多的數據。

    標簽: FAT 硬盤 文件系統

    上傳時間: 2013-10-21

    上傳用戶:ztj182002

  • Arduino學習筆記3_連接HMC5883L三軸電子羅盤傳感器

    用途:測量地磁方向,測量物體靜止時候的方向,測量傳感器周圍磁力線的方向。注意,測量地磁時候容易受到周圍磁場影響,主芯片HMC5883 三軸磁阻傳感器特點(抄自網上): 1,數字量輸出:I2C 數字量輸出接口,設計使用非常方便。 2,尺寸小: 3x3x0.9mm LCC 封裝,適合大規模量產使用。 3,精度高:1-2 度,內置12 位A/D,OFFSET, SET/RESET 電路,不會出現磁飽和現象,不會有累加誤差。 4,支持自動校準程序,簡化使用步驟,終端產品使用非常方便。 5,內置自測試電路,方便量產測試,無需增加額外昂貴的測試設備。 6,功耗低:供電電壓1.8V, 功耗睡眠模式-2.5uA 測量模式-0.6mA   連接方法: 只要連接VCC,GND,SDA,SDL 四條線。 Arduino GND -> HMC5883L GND Arduino 3.3V -> HMC5883L VCC Arduino A4 (SDA) -> HMC5883L SDA Arduino A5 (SCL) -> HMC5883L SCL (注意,接線是A4,A5,不是D4,D5) 源程序: #include <Wire.h> #include <HMC5883L.h> HMC5883Lcompass; voidsetup() { Serial.begin(9600); Wire.begin(); compass = HMC5883L(); compass.SetScale(1.3); compass.SetMeasurementMode(Measurement_Continuous); } voidloop() { MagnetometerRaw raw = compass.ReadRawAxis(); MagnetometerScaled scaled = compass.ReadScaledAxis(); float xHeading = atan2(scaled.YAxis, scaled.XAxis); float yHeading = atan2(scaled.ZAxis, scaled.XAxis); float zHeading = atan2(scaled.ZAxis, scaled.YAxis); if(xHeading < 0) xHeading += 2*PI; if(xHeading > 2*PI) xHeading -= 2*PI; if(yHeading < 0) yHeading += 2*PI; if(yHeading > 2*PI) yHeading -= 2*PI; if(zHeading < 0) zHeading += 2*PI; if(zHeading > 2*PI) zHeading -= 2*PI; float xDegrees = xHeading * 180/M_PI; float yDegrees = yHeading * 180/M_PI; float zDegrees = zHeading * 180/M_PI; Serial.print(xDegrees); Serial.print(","); Serial.print(yDegrees); Serial.print(","); Serial.print(zDegrees); Serial.println(";"); delay(100); }

    標簽: Arduino 5883L 5883 HMC

    上傳時間: 2014-03-20

    上傳用戶:tianyi223

  • Arduino學習筆記4_Arduino軟件模擬PWM

    注:1.這篇文章斷斷續續寫了很久,畫圖技術也不精,難免錯漏,大家湊合看.有問題可以留言.      2.論壇排版把我的代碼縮進全弄沒了,大家將代碼粘貼到arduino編譯器,然后按ctrl+T重新格式化代碼格式即可看的舒服. 一、什么是PWM PWM 即Pulse Wavelength Modulation 脈寬調制波,通過調整輸出信號占空比,從而達到改 變輸出平均電壓的目的。相信Arduino 的PWM 大家都不陌生,在Arduino Duemilanove 2009 中,有6 個8 位精度PWM 引腳,分別是3, 5, 6, 9, 10, 11 腳。我們可以使用analogWrite()控 制PWM 腳輸出頻率大概在500Hz 的左右的PWM 調制波。分辨率8 位即2 的8 次方等于 256 級精度。但是有時候我們會覺得6 個PWM 引腳不夠用。比如我們做一個10 路燈調光, 就需要有10 個PWM 腳。Arduino Duemilanove 2009 有13 個數字輸出腳,如果它們都可以 PWM 的話,就能滿足條件了。于是本文介紹用軟件模擬PWM。 二、Arduino 軟件模擬PWM Arduino PWM 調壓原理:PWM 有好幾種方法。而Arduino 因為電源和實現難度限制,一般 使用周期恒定,占空比變化的單極性PWM。 通過調整一個周期里面輸出腳高/低電平的時間比(即是占空比)去獲得給一個用電器不同 的平均功率。 如圖所示,假設PWM 波形周期1ms(即1kHz),分辨率1000 級。那么需要一個信號時間 精度1ms/1000=1us 的信號源,即1MHz。所以說,PWM 的實現難點在于需要使用很高頻的 信號源,才能獲得快速與高精度。下面先由一個簡單的PWM 程序開始: const int PWMPin = 13; int bright = 0; void setup() { pinMode(PWMPin, OUTPUT); } void loop() { if((bright++) == 255) bright = 0; for(int i = 0; i < 255; i++) { if(i < bright) { digitalWrite(PWMPin, HIGH); delayMicroseconds(30); } else { digitalWrite(PWMPin, LOW); delayMicroseconds(30); } } } 這是一個軟件PWM 控制Arduino D13 引腳的例子。只需要一塊Arduino 即可測試此代碼。 程序解析:由for 循環可以看出,完成一個PWM 周期,共循環255 次。 假設bright=100 時候,在第0~100 次循環中,i 等于1 到99 均小于bright,于是輸出PWMPin 高電平; 然后第100 到255 次循環里面,i 等于100~255 大于bright,于是輸出PWMPin 低電平。無 論輸出高低電平都保持30us。 那么說,如果bright=100 的話,就有100 次循環是高電平,155 次循環是低電平。 如果忽略指令執行時間的話,這次的PWM 波形占空比為100/255,如果調整bright 的值, 就能改變接在D13 的LED 的亮度。 這里設置了每次for 循環之后,將bright 加一,并且當bright 加到255 時歸0。所以,我們 看到的最終效果就是LED 慢慢變亮,到頂之后然后突然暗回去重新變亮。 這是最基本的PWM 方法,也應該是大家想的比較多的想法。 然后介紹一個簡單一點的。思維風格完全不同。不過對于驅動一個LED 來說,效果與上面 的程序一樣。 const int PWMPin = 13; int bright = 0; void setup() { pinMode(PWMPin, OUTPUT); } void loop() { digitalWrite(PWMPin, HIGH); delayMicroseconds(bright*30); digitalWrite(PWMPin, LOW); delayMicroseconds((255 - bright)*30); if((bright++) == 255) bright = 0; } 可以看出,這段代碼少了一個For 循環。它先輸出一個高電平,然后維持(bright*30)us。然 后輸出一個低電平,維持時間((255-bright)*30)us。這樣兩次高低就能完成一個PWM 周期。 分辨率也是255。 三、多引腳PWM Arduino 本身已有PWM 引腳并且運行起來不占CPU 時間,所以軟件模擬一個引腳的PWM 完全沒有實用意義。我們軟件模擬的價值在于:他能將任意的數字IO 口變成PWM 引腳。 當一片Arduino 要同時控制多個PWM,并且沒有其他重任務的時候,就要用軟件PWM 了。 多引腳PWM 有一種下面的方式: int brights[14] = {0}; //定義14個引腳的初始亮度,可以隨意設置 int StartPWMPin = 0, EndPWMPin = 13; //設置D0~D13為PWM 引腳 int PWMResolution = 255; //設置PWM 占空比分辨率 void setup() { //定義所有IO 端輸出 for(int i = StartPWMPin; i <= EndPWMPin; i++) { pinMode(i, OUTPUT); //隨便定義個初始亮度,便于觀察 brights[ i ] = random(0, 255); } } void loop() { //這for 循環是為14盞燈做漸亮的。每次Arduino loop()循環, //brights 自增一次。直到brights=255時候,將brights 置零重新計數。 for(int i = StartPWMPin; i <= EndPWMPin; i++) { if((brights[i]++) == PWMResolution) brights[i] = 0; } for(int i = 0; i <= PWMResolution; i++) //i 是計數一個PWM 周期 { for(int j = StartPWMPin; j <= EndPWMPin; j++) //每個PWM 周期均遍歷所有引腳 { if(i < brights[j])\   所以我們要更改PWM 周期的話,我們將精度(代碼里面的變量:PWMResolution)降低就行,比如一般調整LED 亮度的話,我們用64 級精度就行。這樣速度就是2x32x64=4ms。就不會閃了。

    標簽: Arduino PWM 軟件模擬

    上傳時間: 2013-10-23

    上傳用戶:mqien

  • 此教程面對JSP初學者而寫

    此教程面對JSP初學者而寫,為提高正確性和按本教程操作必定成功的機率,作者我是一邊安裝操作一邊抓圖一邊寫的,并進行過仔細的檢查,當然,人有失手,若其中有錯,那么是上天注定的了,與作者無關^_^。 在理論上來講,只要你一步不漏并正確按本教程安裝配置JSP環境,那么你的成功率是120%。 若果還是無法成功,你可以聯系作者或Delete本教程,若本教程給你造成困繞本人深感抱歉!

    標簽: JSP 教程 初學者

    上傳時間: 2014-01-09

    上傳用戶:cylnpy

  • 使用的是API編程,可格式化、校驗和讀寫特殊扇區。可用作Windows下的磁盤加密。本函數還有以下兩個缺點以待改進: 1.本函數還只能讀能讀 A: 和 B:,即只能對軟盤操作 2.不能改變磁盤扇區大小

    使用的是API編程,可格式化、校驗和讀寫特殊扇區。可用作Windows下的磁盤加密。本函數還有以下兩個缺點以待改進: 1.本函數還只能讀能讀 A: 和 B:,即只能對軟盤操作 2.不能改變磁盤扇區大小,只能是標準的 512 個字節。 參數說明: command 操作: 0 重置磁盤 2 讀扇區 3 寫扇區 4 校驗磁道 5 格式化磁道 8 得到設備參數 (int 1EH) drive 驅動器 A:=0 B:=1 head 磁頭號,范圍 0 - 1 track 磁道號,范圍 0 - 84 ( 80 - 84 為特殊磁道,通常用來加密 ) sector 扇區號,范圍 0 - 255 ( 19 - 255 為非標準扇區編號,通常用來加密) nsectors 每次讀或寫的扇區數,不能超出每磁道的最大扇區數 buffer 數據寫入或讀出的緩沖區,大小為 512 個字節 返回值 ( 同 Int 13H ): 0x0 成功 0x1 無效的命令 0x3 磁盤被寫保護 0x4 扇區沒有找到 0xa 發現壞扇區 0x80 磁盤沒有準備好

    標簽: Windows API 函數 磁盤

    上傳時間: 2013-12-05

    上傳用戶:moerwang

  • 設置功能: 在設置中可以設置內容(加、減、乘、除、混合、隨機五種;時間(1分鐘、5分鐘、10分鐘、20分鐘、30分鐘、自定義);題數(10題、20題、40題、50題、自定義);界面方式(古老傳說、絢麗

    設置功能: 在設置中可以設置內容(加、減、乘、除、混合、隨機五種;時間(1分鐘、5分鐘、10分鐘、20分鐘、30分鐘、自定義);題數(10題、20題、40題、50題、自定義);界面方式(古老傳說、絢麗多彩、人間仙境、透明精靈、萬物光芒四種)。 界面特色: 在界面中有剩余時間、分數、題目數等提示,這些提示可以讓自己清楚知道自己的成績,當考試結束時會彈出成績窗口,以便同學們查漏補缺。 操作方法: 本軟件的操作方法很是簡單,可以脫離鼠標操作,也就是全鍵盤輸入,按回車鍵和輸入內容就可以實現操作,為考試者提供了方便。 注意事項: 在透明精靈時就有可能看不到界面中的一些特色。要注意使用。要在設置的內容中選擇一項運算方式方可以開始計時考試。因為當前軟件是測試版所以在考試過程中可以按 ALT + X 強行退出考試系統。 解壓密碼為:vbsoft.icpcn.com

    標簽: 自定義 隨機

    上傳時間: 2015-03-24

    上傳用戶:aa54

  • 時鐘日歷芯片PCF8584的C51源程序

    時鐘日歷芯片PCF8584的C51源程序,轉載自于磁動力電子網

    標簽: 8584 PCF C51 時鐘日歷

    上傳時間: 2015-04-03

    上傳用戶:源碼3

  • 格子Boltzmann方法 格子Boltzmann方法是為了保留格子氣自動機方法的優點

    格子Boltzmann方法 格子Boltzmann方法是為了保留格子氣自動機方法的優點,克服其缺點而發展起來的方法。 特別是1992年,錢躍弘、陳十一等的開創性工作(提出LBGK模型方法),使該方法廣泛地應用到計算流體力學(單相流、多相流、多孔介質流、熱對流、磁流體、反應-擴散等)。

    標簽: Boltzmann 自動機

    上傳時間: 2013-12-18

    上傳用戶:hustfanenze

  • 格子Boltzmann方法 格子Boltzmann方法是為了保留格子氣自動機方法的優點

    格子Boltzmann方法 格子Boltzmann方法是為了保留格子氣自動機方法的優點,克服其缺點而發展起來的方法。 特別是1992年,錢躍弘、陳十一等的開創性工作(提出LBGK模型方法),使該方法廣泛地應用到計算流體力學(單相流、多相流、多孔介質流、熱對流、磁流體、反應-擴散等)。 這是“格子模型”的并行處理,在LINUX下調試通過

    標簽: Boltzmann 自動機

    上傳時間: 2013-12-25

    上傳用戶:懶龍1988

主站蜘蛛池模板: 福鼎市| 无棣县| 洞头县| 德昌县| 梁平县| 大邑县| 赞皇县| 师宗县| 新晃| 台东市| 彰武县| 宝应县| 乌兰察布市| 遵化市| 盖州市| 永平县| 武隆县| 邵武市| 峨眉山市| 东兰县| 泊头市| 广东省| 台南县| 吴桥县| 怀宁县| 海兴县| 稷山县| 十堰市| 通化市| 固安县| 九台市| 牡丹江市| 尼木县| 汉中市| 扬州市| 翁源县| 安岳县| 唐山市| 阆中市| 鸡西市| 泸水县|