RBF神經網絡在特征選擇中的應用
提出了一個自適應量子粒子群優化算法,用于訓練RBF網絡的基函數中心和寬度,并結合最小二乘法計算網絡權值,對RBF網絡的泛化能力進行改進并用于特征選擇。實驗結果表明,采用自適應量子粒子群優化算法獲得的RBF網絡模型不但具有很強的泛化能力,而且具有良好的穩定性,能夠選擇出較優秀的特征子集。...
提出了一個自適應量子粒子群優化算法,用于訓練RBF網絡的基函數中心和寬度,并結合最小二乘法計算網絡權值,對RBF網絡的泛化能力進行改進并用于特征選擇。實驗結果表明,采用自適應量子粒子群優化算法獲得的RBF網絡模型不但具有很強的泛化能力,而且具有良好的穩定性,能夠選擇出較優秀的特征子集。...
本文提出一種用于獨立成份分析(ICA)的特征選擇濾波方案用于改善ICA算法對關鍵獨立成份(SOI)的分離和提取,關鍵獨立成份在其信號樣本數據的空間分布上具有一定特征. 本文以平滑濾波為例,表明加入此類特征濾波的ICA算法可以改善對于視覺功能區等平滑圖象信號的提取. 因此, 這種特征濾波技術在估計具有...
兩種SVM特征選擇方法,用PPT詳細的闡述了作者的思路和實驗情況,非常清除明白。...
特征選擇算法的java 實現,并且使用Jfreechart實現圖形顯示...
特征選擇算法的改進...比較實踐證明是個優秀的算法...