繞組勵磁同步電機具有功率因數(shù)可調(diào)、效率高等優(yōu)點,在工業(yè)大功率場合獲得了廣泛應(yīng)用,因此研究和開發(fā)高性能的繞組勵磁同步電機驅(qū)動系統(tǒng)具有重大的經(jīng)濟價值和社會效益。目前開發(fā)高性能繞組勵磁同步電機驅(qū)動系統(tǒng)所采用的控制方案主要有兩種:一種是直接轉(zhuǎn)矩控制(DTFC);另一種是磁場定向矢量控制(FOC)。繞組勵磁同步電機的矢量控制策略具有控制結(jié)構(gòu)簡單,物理概念清晰,電流、轉(zhuǎn)矩波動小,轉(zhuǎn)速響應(yīng)迅速,易實現(xiàn)數(shù)字控制等優(yōu)點。因此,在交流傳動領(lǐng)域中,越來越受到學(xué)者的關(guān)注。但是,無論在國內(nèi)還是國外,交直交型繞組勵磁同步電機矢量控制系統(tǒng)的研究還缺乏全面深入的理論研究,還沒有建造起矢量控制系統(tǒng)的理論體系構(gòu)架。本文對繞組勵磁同步電機矢量控制系統(tǒng)進行了初步的理論探討,并進行了詳細的實踐研究,為以后更深入、廣泛地研究此系統(tǒng),打好堅實的基礎(chǔ)。本論文主要研究內(nèi)容如下: @@ 通過廣泛的查找文獻,對幾種常見的同步電機傳動系統(tǒng)進行了綜述,分析了同步電機變頻調(diào)速原理,在此基礎(chǔ)上,講述了無傳感器技術(shù)在同步電機中的應(yīng)用現(xiàn)狀。無傳感器技術(shù)主要有兩大類:基于基波量的檢測方法和基于外加信號的激勵法。隨后,對轉(zhuǎn)子初始位置的估計進行了綜述,其方法有:基于電機定子鐵芯飽和效應(yīng)的轉(zhuǎn)子位置估計,高頻信號注入法,基于定子繞組感應(yīng)電壓的估計法和基于相電感計算法等。繞組勵磁同步電機轉(zhuǎn)子初始位置估計的研究還很少。 @@ 對繞組勵磁同步電機矢量控制的理論進行了全面深入地研究,建立起矢量控制的理論體系構(gòu)架。 @@ 首先,基于磁勢等效原理,將三相靜止交流信號等效變換為兩相旋轉(zhuǎn)直流信號,將交流電機等效為直流電機進行控制。在Clarke變換和Park變換的基礎(chǔ)上,得到凸極同步電機轉(zhuǎn)子磁場定向的電壓矩陣方程、功率方程和運動方程。根據(jù)上述方程,繪出dq軸的等值電路及矢量圖,得到狀態(tài)空間描述的dq軸數(shù)學(xué)模型。 @@ 其次,根據(jù)模型參考自適應(yīng)原理,對同步電機轉(zhuǎn)速進行估計。忽略同步電機d軸阻尼繞組的作用,取同步轉(zhuǎn)速為零,得到同步電機αβ靜止坐標系下 的數(shù)學(xué)模型。將不含有轉(zhuǎn)子轉(zhuǎn)速信息的方程作為參考模型,將含有轉(zhuǎn)速參數(shù)的方程作為可調(diào)模型,根據(jù)波波夫超穩(wěn)定性和正性原理,對轉(zhuǎn)子轉(zhuǎn)速進行估計。@@ 最后,根據(jù)模型參考自適應(yīng)估計的轉(zhuǎn)子轉(zhuǎn)速,設(shè)計磁通觀測器來估計轉(zhuǎn)子磁通,實現(xiàn)磁通反饋閉環(huán)控制。磁通觀測器采用降維觀測器,僅對轉(zhuǎn)子磁通分量進行重構(gòu),并通過極點配置算法,合理配置觀測器的極點,使觀測器滿足系統(tǒng)的性能指標,達到磁通觀測的目的。 @@ 新穎的空間矢量脈寬調(diào)制算法。從空間矢量的基本概念入手,深入分析了定子三相對稱電壓與空間電壓矢量之間的關(guān)系。由三相電壓源型逆變器輸出電壓波形得到六個有效開關(guān)狀態(tài)矢量,這六個開關(guān)矢量和兩個零矢量合成一組等幅不同相的電壓空間矢量,去逼近圓形旋轉(zhuǎn)磁場。其次,根據(jù)空間電壓矢量所在的扇區(qū),選擇相鄰有效開關(guān)矢量,在伏秒平衡的法則下,計算各有效開關(guān)矢量的作用時間。并且,探討了扇區(qū)判斷和扇區(qū)過渡問題,定性分析了空間矢量脈寬調(diào)制(SVPWM)的性能。最后,根據(jù)每個扇區(qū)中開關(guān)矢量作用時間,采用軟件構(gòu)造法,在TMS320LF2407A硬件上實現(xiàn)了SVPWM。實驗結(jié)果表明,該算法簡單易實現(xiàn),能夠有效的提高直流母線的電壓利用率,具有在低頻運行穩(wěn)定,逆變器輸出電流正弦度好等優(yōu)點。 @@ 空間矢量過調(diào)制算法的研究。在上述線性調(diào)制的基礎(chǔ)上,提出一種基于電壓空間矢量的過調(diào)制方法。過調(diào)制區(qū)域根據(jù)調(diào)制度分成兩種不同的模式,分別為模式Ⅰ(0.907
上傳時間: 2013-07-25
上傳用戶:gaorxchina
風(fēng)能作為一種清潔可再生能源,迅速發(fā)展,已經(jīng)成為世界新能源最主要的發(fā)展方向之一。風(fēng)力發(fā)電系統(tǒng)按照容量可以分為小型風(fēng)力發(fā)電系統(tǒng)和大型風(fēng)力發(fā)電系統(tǒng),按照是否并網(wǎng)又分為離網(wǎng)系統(tǒng)和并網(wǎng)系統(tǒng),文章著重研究小型并網(wǎng)風(fēng)力發(fā)電系統(tǒng)。 本文在分析國內(nèi)外風(fēng)力發(fā)電系統(tǒng)的現(xiàn)狀以及風(fēng)電產(chǎn)業(yè)現(xiàn)狀的基礎(chǔ)上,研究了風(fēng)力發(fā)電系統(tǒng)的總體結(jié)構(gòu)、風(fēng)力機的主要機型以及發(fā)電系統(tǒng)的分類。通過研究風(fēng)力機和永磁同步發(fā)電機各自的特性,基于它們的數(shù)學(xué)模型分別建立了各自的仿真模型。基于上述仿真模型,分別建立了整個電壓源型逆變器并網(wǎng)風(fēng)力發(fā)電系統(tǒng)和電流源型逆變器并網(wǎng)風(fēng)力發(fā)電系統(tǒng)的仿真模型。 在風(fēng)力發(fā)電并網(wǎng)系統(tǒng)中,并網(wǎng)逆變器是核心部分,可以分為電流源型逆變器和電壓源型逆變器。本文研究了三相電壓源型逆變器實現(xiàn)并網(wǎng)所采用的控制方法,包括空間矢量調(diào)制法和鎖相環(huán)技術(shù)。針對電流源型并網(wǎng)逆變器風(fēng)力發(fā)電系統(tǒng),研究了PWM電流源型整流器的空間矢量調(diào)制和PWM電流源型逆變器的三種脈寬調(diào)制策略。 文中電壓源型逆變器并網(wǎng)風(fēng)力發(fā)電系統(tǒng)的仿真模型,采用BOOST變換器穩(wěn)定逆變器輸入直流電壓,采用SPWM方法控制電壓源型逆變器實現(xiàn)風(fēng)機的并網(wǎng);在電流源型逆變器并網(wǎng)風(fēng)力發(fā)電系統(tǒng)仿真模型中,用空間矢量調(diào)制方法控制PWM電流源型整流器和用SPWM控制電流源型逆變器的方法實現(xiàn)了系統(tǒng)的并網(wǎng)。本文對采用的控制方法進行了仿真驗證,比較了兩種并網(wǎng)系統(tǒng)的并網(wǎng)優(yōu)缺點,最后對兩種并網(wǎng)逆變器的區(qū)別進行了總結(jié)。
標簽: 并網(wǎng) 仿真研究 風(fēng)力發(fā)電系統(tǒng)
上傳時間: 2013-06-29
上傳用戶:wyaqy
異步電動機直接轉(zhuǎn)矩控制技術(shù)是近年來發(fā)展起來的一種新型、高性能交流調(diào)速技術(shù)。它利用電壓源型逆變器的工作過程,控制定子磁鏈的走或停,即調(diào)整定子磁鏈與轉(zhuǎn)子磁鏈的夾角大小,從而對電機轉(zhuǎn)矩進行直接控制以獲得良好的動態(tài)性能。 論文首先探討了直接轉(zhuǎn)矩控制技術(shù)的現(xiàn)狀和發(fā)展趨勢,闡述了直接轉(zhuǎn)矩控制的基本原理,分析了常用的圓形磁鏈軌跡控制方法,詳細介紹了直接轉(zhuǎn)矩控制系統(tǒng)主要模塊的設(shè)計和實現(xiàn)。在分析交流異步電機動態(tài)數(shù)學(xué)模型、轉(zhuǎn)矩和磁鏈計算方程的基礎(chǔ)上,分析了直接轉(zhuǎn)矩控制的異步電動機在低速運行時存在轉(zhuǎn)矩脈動和轉(zhuǎn)速波動較大的問題。基于占空比控制和離散占空比控制的異步電動機直接轉(zhuǎn)矩控制方法,由電機電磁轉(zhuǎn)矩公式和合成電壓矢量理論推導(dǎo)了直接計算占空比的方法,在不影響系統(tǒng)各方面性能指標的情況下使降低轉(zhuǎn)矩脈動的計算量大大減少,方便了計算和使用。兩種方法均具有系統(tǒng)結(jié)構(gòu)簡單、占空比計算量小等優(yōu)點。研究結(jié)果驗證了這兩種方法的正確性和有效性。在第一種方法中加入了單神經(jīng)元控制器,使系統(tǒng)的動靜態(tài)性能得到了提高。接著對利用空間電壓矢量調(diào)制的直接轉(zhuǎn)矩控制系統(tǒng)進行了研究。仿真結(jié)果表明此種方法能夠有效的降低轉(zhuǎn)矩脈動,使系統(tǒng)性能得到提高。 以TMS320F2812DSP為CPU搭建了直接轉(zhuǎn)矩控制硬件實驗平臺,調(diào)試了硬件電路。編寫了相關(guān)軟件流程圖和程序清單。
標簽: DSP 異步電動機 直接轉(zhuǎn)矩控制
上傳時間: 2013-04-24
上傳用戶:cc111
在能源枯竭及環(huán)境污染問題日益嚴重的今天,光伏發(fā)電是未來可再生能源應(yīng)用的一種重要方法。本文以光伏逆變技術(shù)為研究對象,對光伏系統(tǒng)最大功率點跟蹤方法、光伏智能充電控制策略、光伏并網(wǎng)系統(tǒng)拓撲結(jié)構(gòu)與控制方法、光伏并網(wǎng)與有源濾波統(tǒng)一控制方法等問題進行了深入研究。 在擾動觀測法的基礎(chǔ)上,提出了一種直接電流控制最大功率點跟蹤方法,通過檢測變換器輸出電流進行最大功率點跟蹤控制,簡化控制算法,同時省去了擾動觀測法中的電壓和電流傳感器,降低系統(tǒng)成本。 研究了一種實用的光伏系統(tǒng)蓄電池充電控制策略,將最大功率點跟蹤與智能充電控制有機結(jié)合在一起,充分利用光伏電池的輸出功率,縮短充電時間,提高充電效率;研究了一種全數(shù)字式逆變器,通過電壓有效值外環(huán)和瞬時值內(nèi)環(huán)的雙閉環(huán)控制,既能保證系統(tǒng)輸出電壓的穩(wěn)態(tài)精度,又能保證瞬變負載條件下的動態(tài)特性。研制了一套3kW光伏獨立發(fā)電系統(tǒng)并進行了實驗驗證。 針對住宅型光伏并網(wǎng)逆變器體積小、性能價格比高的要求,研究了一種基于導(dǎo)抗變換器的并網(wǎng)逆變器拓撲結(jié)構(gòu),相比于傳統(tǒng)電流型逆變器,本拓撲省去了笨重的電抗器,同時利用高頻變壓器進行能量傳遞和電氣隔離,進一步降低了系統(tǒng)損耗和體積,降低系統(tǒng)成本。 經(jīng)研究發(fā)現(xiàn),由于導(dǎo)抗變換器的固有特性,采用傳統(tǒng)的SPWM調(diào)制方法將導(dǎo)致并網(wǎng)逆變器輸出平頂飽和的非正弦電流,造成對電網(wǎng)的諧波污染,提出了一種新型改進調(diào)制模式。該方法可以實現(xiàn)高功率因數(shù)、低諧波并網(wǎng)發(fā)電。根據(jù)上述理論分析,研制了一臺3kW單相光伏并網(wǎng)逆變器,實驗結(jié)果驗證了理論分析的正確性。 研究了一種三相電流型并網(wǎng)逆變器拓撲結(jié)構(gòu)及其控制方法,采用改進調(diào)制模式對其進行控制,在諧波抑制方面取得了滿意的效果。提出的三相并網(wǎng)逆變方案,相比于傳統(tǒng)三相并網(wǎng)逆變器,具有如下顯著優(yōu)點:系統(tǒng)中任意一相都是一個獨立的子系統(tǒng),不受其它相影響,即使在某一相或某兩相損壞的情況下,剩余相也能正常運行,增加了系統(tǒng)的冗余性;在三相電網(wǎng)不平衡情況下,本方法也能提供穩(wěn)定的三相電流,增加系統(tǒng)抗電網(wǎng)波動能力。初看起來本方案使用的導(dǎo)抗變換器和變壓器有3套,但是每相承受的功率容量只有系統(tǒng)總功率的三分之一,這樣可以選用較小容量的器件,有利于高頻電感和變壓器的制作和生產(chǎn)。提出了一種基于導(dǎo)抗變換器的三相電流型逆變器實現(xiàn)方案,利用導(dǎo)抗變換器將輸入直流電壓變換為高頻正弦電流,經(jīng)高頻變壓器隔離及電流等級變換后進行裂相調(diào)制,輸出為三相正弦電流。該方法不僅省去了傳統(tǒng)電流型逆變器直流側(cè)電抗器,而且采用高頻變換進行功率傳輸,減小了隔離變壓器及輸出濾波器的體積,有利于裝置的小型化和降低成本。 針對光伏電池輸出電壓較低的問題,研究了一種單級式三相升壓型并網(wǎng)逆變器,通過一級變換同時實現(xiàn)升壓和DC/AC變換功能,并且提出了一種基于DSP芯片的控制策略,本方法僅用一個電壓傳感器就能替代原先的三個電壓傳感器:每個載波周期短路相只進行一次開關(guān)動作,同時任何時刻只有2個開關(guān)管導(dǎo)通,可有效降低系統(tǒng)的開關(guān)損耗和導(dǎo)通損耗;由于采用DSP控制,具有控制靈活、穩(wěn)定性高、成本低、并網(wǎng)電能質(zhì)量好,便于功率調(diào)節(jié)等優(yōu)點。 提出了一種光伏并網(wǎng)與有源濾波兼用的統(tǒng)一控制策略,在同一套裝置上既實現(xiàn)光伏并網(wǎng)發(fā)電,又實現(xiàn)諧波補償,克服目前的光伏發(fā)電裝置白天發(fā)電、夜間停機的不足,提高系統(tǒng)利用率。詳細分析了無功電流和諧波電流的檢測方法、光伏并網(wǎng)發(fā)電有功指令電流的生成方法及電流環(huán)控制器和電壓環(huán)控制器的設(shè)計方法,并對光伏并網(wǎng)發(fā)電與有源濾波統(tǒng)一控制模式和單一有源濾波模式進行了討論,仿真和實驗結(jié)果驗證了所提出的系統(tǒng)結(jié)構(gòu)及控制策略的正確性和可行性。
標簽: 光伏發(fā)電系統(tǒng) 逆變 技術(shù)研究
上傳時間: 2013-04-24
上傳用戶:dancnc
近年來,隨著集成電路工藝技術(shù)的進步,電子系統(tǒng)的構(gòu)成發(fā)生了兩個重要的變化: 一個是數(shù)字信號處理和數(shù)字電路成為系統(tǒng)的核心,一個是整個電子系統(tǒng)可以集成在一個芯片上(稱為片上系統(tǒng))。這些變化改變了模擬電路在電子系統(tǒng)中的作用,并且影響著模擬集成電路的發(fā)展。 數(shù)字電路不僅具有遠遠超過模擬電路的集成規(guī)模,而且具有可編程、靈活、易于附加功能、設(shè)計周期短、對噪聲和制造工藝誤差的抗擾性強等優(yōu)點,因而大多數(shù)復(fù)雜系統(tǒng)以數(shù)字信號處理和數(shù)字電路為核心已成為必然的趨勢。雖然如此,模擬電路仍然是電子系統(tǒng)中非常重要的組成部分。這是因為我們接觸到的外部世界的物理量主要都是模擬量,比如圖像、聲音、壓力、溫度、濕度、重量等,要將它們變換為數(shù)字信號,需要模擬信號處理和數(shù)據(jù)轉(zhuǎn)換電路,如果這些電路性能不夠高,將會影響整個系統(tǒng)的性能。其次,系統(tǒng)中的許多功能不可能或很難用數(shù)字電路完成,如微弱信號放大,很高頻率和寬頻帶信號的實時處理等。因此,雖然模擬電路在系統(tǒng)中不再是核心,但作為固有的模擬世界與數(shù)字系統(tǒng)的接口,其地位和作用仍然十分重要。 片上系統(tǒng)要求將數(shù)字電路和模擬電路集成在一個芯片上,這希望模擬電路使用與數(shù)字電路相同的制造工藝。隨著MOS器件的線寬不斷減小,使MOS器件的性能不斷提高,MOS數(shù)字電路成為數(shù)字集成電路的主流,并因此促進了MOS模擬集成電路的迅速發(fā)展。為了適應(yīng)電子系統(tǒng)功能的不斷擴展和性能的不斷提高,對模擬電路在降低電源電壓、提高工作頻率、擴大線性工作范圍和提高性能指標的精度和穩(wěn)定度等方面提出更高要求,促進了新電路技術(shù)的發(fā)展。 作為研究生課程的教材,本書內(nèi)容是在本科相關(guān)課程基礎(chǔ)上的深化和擴展,同時涉及實際設(shè)計中需要考慮的一些問題,重點介紹具有高工作頻率、低電源電壓和高工作穩(wěn)定性的新電路技術(shù)和在電子系統(tǒng)中占有重要地位的功能電路及其中的新技術(shù)。全書共7章,大致可分為三個部分。第一部分包括第1章和第7章。第1章為MOS模擬集成電路基礎(chǔ),比較全面地介紹MOS器件的工作原理和特性以及由MOS器件構(gòu)成的基本單元電路,為學(xué)習(xí)本教材其他內(nèi)容提供必要的知識。由于版圖設(shè)計與工藝參數(shù)對模擬集成電路性能的影響很大,因此第7章簡單介紹制造MOS模擬集成電路的CMOS工藝過程和版圖設(shè)計技術(shù),讀者可以通過對該章所介紹的相關(guān)背景知識的了解,更深入地理解MOS器件和電路的特性,有助于更好地完成模擬集成電路的可實現(xiàn)性設(shè)計。第二部分為新電路技術(shù),由第2章、第3章和第5章的部分組成,包括近年來逐步獲得廣泛應(yīng)用的電流模電路、抽樣數(shù)據(jù)電路和對數(shù)域電路,它們在提高工作頻率、降低電源電壓、擴大線性工作范圍和提高性能指標的精度和穩(wěn)定度方面具有明顯的潛力,同時它們也引入了一些模擬電路的新概念。這些內(nèi)容有助于讀者開拓提高電路性能方面的思路。第2章介紹電流模電路的工作原理、特點和典型電路。與傳統(tǒng)的以電壓作為信號載體的電路不同,這是一種以電流作為信號載體的電路,雖然在電路中電壓和電流總是共同存在并相互作用的,但由于信號載體不同,不僅電路性能不同而且電路結(jié)構(gòu)也不同。第3章介紹抽樣數(shù)據(jù)電路的特點和開關(guān)電容與開關(guān)電流電路的工作原理、分析方法與典型電路。抽樣數(shù)據(jù)電路類似于數(shù)字電路,處理的是時間離散信號,又類似于模擬電路,處理的是幅度連續(xù)信號,它比模擬電路具有穩(wěn)定準確的時間常數(shù),解決了模擬電路實際應(yīng)用中的一大障礙。對數(shù)域電路在第5章中結(jié)合其在濾波器中的應(yīng)用介紹,這類電路除具有良好的電性能外,還提出了一種利用器件的非線性特性實現(xiàn)線性電路的新思路。第三部分介紹幾個模擬電路的功能模塊,它們是電子系統(tǒng)中的關(guān)鍵組成部分,并且與信號和信號處理聯(lián)系密切,有助于在信號和電路間形成整體觀念。這部分包括第4章至第6章。第4章介紹數(shù)據(jù)轉(zhuǎn)換電路的技術(shù)指標和高精度與高速度轉(zhuǎn)換電路的構(gòu)成、工作原理、特點和典型電路。第5章介紹模擬集成濾波器的設(shè)計方法和主要類型,包括連續(xù)時間濾波器、對數(shù)域濾波器和抽樣數(shù)據(jù)濾波器。第6章介紹通信系統(tǒng)中的收發(fā)器與射頻前端電路,包括收信器、發(fā)信器的技術(shù)指標、結(jié)構(gòu)和典型電路。因為載波通信系統(tǒng)傳輸?shù)氖悄M信號,射頻前端電路的性能對整個通信系統(tǒng)有直接的影響,所以射頻集成電路已成為重要的研究課題。 〖〗高等模擬集成電路〖〗〖〗前言〖〗〖〗本書是在為研究生開設(shè)的“高等模擬集成電路”課程講義的基礎(chǔ)上整理而成,由董在望主編,第1、4、7章由李冬梅編寫,第6章由王志華編寫,第5章由李永明和董在望編寫,第2、3章由董在望編寫,李國林參加了部分章節(jié)的校核工作。 本書可作為信息與通信工程和電子科學(xué)與技術(shù)學(xué)科相關(guān)課程的研究生教材或教學(xué)參考書,也可作為本科教學(xué)參考書或選修課教材和供相關(guān)專業(yè)的工程技術(shù)人員參考。 清華大學(xué)出版社多位編輯為本書的出版做了卓有成效的工作,深致謝意。 限于編者水平,難免有錯誤和疏漏之處,歡迎批評指正。 目錄 1.1MOS器件基礎(chǔ)及器件模型 1.1.1結(jié)構(gòu)及工作原理 1.1.2襯底調(diào)制效應(yīng) 1.1.3小信號模型 1.1.4亞閾區(qū)效應(yīng) 1.1.5短溝效應(yīng) 1.1.6SPICE模型 1.2基本放大電路 1.2.1共源(CS)放大電路 1.2.2共漏(CD)放大電路 1.2.3共柵(CG)放大電路 1.2.4共源共柵(CSCG)放大電路 1.2.5差分放大電路 1.3電流源電路 1.3.1二極管連接的MOS器件 1.3.2基本鏡像電流源 1.3.3威爾遜電流源 1.3.4共源共柵電流源 1.3.5有源負載放大電路 1.4運算放大器 1.4.1運算放大器的主要參數(shù) 1.4.2單級運算放大器 1.4.3兩級運算放大器 1.4.4共模反饋(CMFB) 1.4.5運算放大器的頻率補償 1.5模擬開關(guān) 1.5.1導(dǎo)通電阻 1.5.2電荷注入與時鐘饋通 1.6帶隙基準電壓源 1.6.1工作原理 1.6.2與CMOS工藝兼容的帶隙基準電壓源 思考題 2電流模電路 2.1概述 2.1.1電流模電路的概念 2.1.2電流模電路的特點 2.2基本電流模電路 2.2.1電流鏡電路 2.2.2電流放大器 2.2.3電流模積分器 2.3電流模功能電路 2.3.1跨導(dǎo)線性電路 2.3.2電流傳輸器 2.4從電壓模電路變換到電流模電路 2.5電流模電路中的非理想效應(yīng) 2.5.1MOSFET之間的失配 2.5.2寄生電容對頻率特性的影響 思考題 3抽樣數(shù)據(jù)電路 3.1開關(guān)電容電路和開關(guān)電流電路的基本分析方法 3.1.1開關(guān)電容電路的時域分析 3.1.2開關(guān)電流電路的時域分析 3.1.3抽樣數(shù)據(jù)電路的頻域分析 3.2開關(guān)電容電路 3.2.1開關(guān)電容單元電路 3.2.2開關(guān)電容電路的特點 3.2.3非理想因素的影響 3.3開關(guān)電流電路 3.3.1開關(guān)電流單元電路 3.3.2開關(guān)電流電路的特點 3.3.3非理想因素的影響 思考題 4A/D轉(zhuǎn)換器與D/A轉(zhuǎn)換器 4.1概述 4.1.1電子系統(tǒng)中的A/D與D/A轉(zhuǎn)換 4.1.2A/D與D/A轉(zhuǎn)換器的基本原理 4.1.3A/D與D/A轉(zhuǎn)換器的性能指標 4.1.4A/D與D/A轉(zhuǎn)換器的分類 4.1.5A/D與D/A轉(zhuǎn)換器中常用的數(shù)碼類型 4.2高速A/D轉(zhuǎn)換器 4.2.1全并行結(jié)構(gòu)A/D轉(zhuǎn)換器 4.2.2兩步結(jié)構(gòu)A/D轉(zhuǎn)換器 4.2.3插值與折疊結(jié)構(gòu)A/D轉(zhuǎn)換器 4.2.4流水線結(jié)構(gòu)A/D轉(zhuǎn)換器 4.2.5交織結(jié)構(gòu)A/D轉(zhuǎn)換器 4.3高精度A/D轉(zhuǎn)換器 4.3.1逐次逼近型A/D轉(zhuǎn)換器 4.3.2雙斜率積分型A/D轉(zhuǎn)換器 4.3.3過采樣ΣΔA/D轉(zhuǎn)換器 4.4D/A轉(zhuǎn)換器 4.4.1電阻型D/A轉(zhuǎn)換器 4.4.2電流型D/A轉(zhuǎn)換器 4.4.3電容型D/A轉(zhuǎn)換器 思考題 5集成濾波器 5.1引言 5.1.1濾波器的數(shù)學(xué)描述 5.1.2濾波器的頻率特性 5.1.3濾波器設(shè)計的逼近方法 5.2連續(xù)時間濾波器 5.2.1連續(xù)時間濾波器的設(shè)計方法 5.2.2跨導(dǎo)電容(GmC)連續(xù)時間濾波器 5.2.3連續(xù)時間濾波器的片上自動調(diào)節(jié)電路 5.3對數(shù)域濾波器 5.3.1對數(shù)域電路概念及其特點 5.3.2對數(shù)域電路基本單元 5.3.3對數(shù)域濾波器 5.4抽樣數(shù)據(jù)濾波器 5.4.1設(shè)計方法 5.4.2SZ域映射 5.4.3開關(guān)電容電路轉(zhuǎn)換為開關(guān)電流電路的方法 思考題 6收發(fā)器與射頻前端電路 6.1通信系統(tǒng)中的射頻收發(fā)器 6.2集成收信器 6.2.1外差式接收與鏡像信號 6.2.2復(fù)數(shù)信號處理 6.2.3收信器前端結(jié)構(gòu) 6.3集成發(fā)信器 6.3.1上變換器 6.3.2發(fā)信器結(jié)構(gòu) 6.4收發(fā)器的技術(shù)指標 6.4.1噪聲性能 6.4.2靈敏度 6.4.3失真特性與線性度 6.4.4動態(tài)范圍 6.5射頻電路設(shè)計 6.5.1晶體管模型與參數(shù) 6.5.2噪聲 6.5.3集成無源器件 6.5.4低噪聲放大器 6.5.5混頻器 6.5.6頻率綜合器 6.5.7功率放大器 思考題 7CMOS集成電路制造工藝及版圖設(shè)計 7.1集成電路制造工藝簡介 7.1.1單晶生長與襯底制備 7.1.2光刻 7.1.3氧化 7.1.4擴散及離子注入 7.1.5化學(xué)氣相淀積(CVD) 7.1.6接觸與互連 7.2CMOS工藝流程與集成電路中的元件 7.2.1硅柵CMOS工藝流程 7.2.2CMOS集成電路中的無源元件 7.2.3CMOS集成電路中的寄生效應(yīng) 7.3版圖設(shè)計 7.3.1硅柵CMOS集成電路的版圖構(gòu)成 7.3.2版圖設(shè)計規(guī)則 7.3.3CMOS版圖設(shè)計技術(shù) 思考題
標簽: 模擬集成電路
上傳時間: 2013-11-13
上傳用戶:chengxin
無線電通信網(wǎng)絡(luò)中的遠程收發(fā)器使用自己的獨立時鐘源。因此,這些收發(fā)器容易產(chǎn)生頻率誤差。當發(fā)射機啟動通信鏈路時,關(guān)聯(lián)的接收機需要在數(shù)據(jù)包的前同步碼階段校正這些誤差,以確保正確的解調(diào)
上傳時間: 2013-10-20
上傳用戶:qiaoyue
透過增加輸入電容,可以在獲得更多鏈波電流的同時,還能藉由降低輸入電容的壓降來縮小電源的工作輸入電壓範圍。這會影響電源的變壓器圈數(shù)比以及各種電壓與電流應(yīng)力(current stresscurrent stress current stresscurrent stress current stress current stress )。電容鏈波電流額定值越大,應(yīng)力越小,電源效率也就越高。
上傳時間: 2013-11-11
上傳用戶:jelenecheung
鑒于市場上常見的51系列8位單片機的售價比較低廉,我們的設(shè)計采用了P89V51RB2FN單片機作為主控制器,P89V51RB2FN 是一款80C51 微控制器,包含16kB Flash 和256 字節(jié)的數(shù)據(jù)RAM ,3 個16 位定時器/計數(shù)器,8 個中斷源,4 個中斷優(yōu)先級,2 個DPTR 寄存器[19];主要負責(zé)系統(tǒng)的控制與協(xié)調(diào)工作。具體方案如下:首先,利用單片機檢測各種模擬信號,通過接收鍵盤送來的命令,確認功能設(shè)置,實現(xiàn)數(shù)據(jù)裝入和實時監(jiān)控,其次,根據(jù)CPU發(fā)出的信號控制語音播報、顯示等功能,用軟件實現(xiàn)系統(tǒng)定時功能,節(jié)省了硬件成本的開銷。這樣的設(shè)計使安裝和調(diào)試工作可以并行進行,極大地縮短了總體設(shè)計和制造的時間,綜合考慮以上因素。
標簽: 微波爐
上傳時間: 2013-10-14
上傳用戶:wanqunsheng
本書從應(yīng)用的角度,詳細地介紹了MCS-51單片機的硬件結(jié)構(gòu)、指令系統(tǒng)、各種硬件接口設(shè)計、各種常用的數(shù)據(jù)運算和處理程序及接口驅(qū)動程序的設(shè)計以及MCS-51單片機應(yīng)用系統(tǒng)的設(shè)計,并對MCS-51單片機應(yīng)用系統(tǒng)設(shè)計中的抗干擾技術(shù)以及各種新器件也作了詳細的介紹。本書突出了選取內(nèi)容的實用性、典型性。書中的應(yīng)用實例,大多來自科研工作及教學(xué)實踐,且經(jīng)過檢驗,內(nèi)容豐富、翔實。 本書可作為工科院校的本科生、研究生、專科生學(xué)習(xí)MCS-51單片機課程的教材,也可供從事自動控制、智能儀器儀表、測試、機電一體化以及各類從事MCS-51單片機應(yīng)用的工程技術(shù)人員參考。 第一章 單片微型計等機概述 1.1 單片機的歷史及發(fā)展概況 1.2 單片機的發(fā)展趨勢 1.3 單片機的應(yīng)用 1.3.1 單片機的特點 1.3.2 單片機的應(yīng)用范圍 1.4 8位單片機的主要生產(chǎn)廠家和機型 1.5 MCS-51系列單片機 第二章 MCS-51單片機的硬件結(jié)構(gòu) 2.1 MCS-51單片機的硬件結(jié)構(gòu) 2.2 MCS-51的引腳 2.2.1 電源及時鐘引腳 2.2.2 控制引腳 2.2.3 I/O口引腳 2.3 MCS-51單片機的中央處理器(CPU) 2.3.1 運算部件 2.3.2 控制部件 2.4 MCS-51存儲器的結(jié)構(gòu) 2.4.1 程序存儲器 2.4.2 內(nèi)部數(shù)據(jù)存儲器 2.4.3 特殊功能寄存器(SFR) 2.4.4 位地址空間 2.4.5 外部數(shù)據(jù)存儲器 2.5 I/O端口 2.5.1 I/O口的內(nèi)部結(jié)構(gòu) 2.5.2 I/O口的讀操作 2.5.3 I/O口的寫操作及負載能力 2.6 復(fù)位電路 2.6.1 復(fù)位時各寄存器的狀態(tài) 2.6.2 復(fù)位電路 2.7 時鐘電路 2.7.1 內(nèi)部時鐘方式 2.7.2 外部時鐘方式 2.7.3 時鐘信號的輸出 第三章 MCS-51的指令系統(tǒng) 3.1 MCS-51指令系統(tǒng)的尋址方式 3.1.1 寄存器尋址 3.1.2 直接尋址 3.1.3 寄存器間接尋址 3.1.4 立即尋址 3.1.5 基址寄存器加變址寄存器間址尋址 3.2 MCS-51指令系統(tǒng)及一般說明 3.2.1 數(shù)據(jù)傳送類指令 3.2.2 算術(shù)操作類指令 3.2.3 邏輯運算指令 3.2.4 控制轉(zhuǎn)移類指令 3.2.5 位操作類指令 第四章 MCS-51的定時器/計數(shù)器 4.1 定時器/計數(shù)器的結(jié)構(gòu) 4.1.1 工作方式控制寄存器TMOD 4.1.2 定時器/計數(shù)器控制寄存器TCON 4.2 定時器/計數(shù)器的四種工作方式 4.2.1 方式0 4.2.2 方式1 4.2.3 方式2 4.2.4 方式3 4.3 定時器/計數(shù)器對輸入信號的要求 4.4 定時器/計數(shù)器編程和應(yīng)用 4.4.1 方式o應(yīng)用(1ms定時) 4.4.2 方式1應(yīng)用 4.4.3 方式2計數(shù)方式 4.4.4 方式3的應(yīng)用 4.4.5 定時器溢出同步問題 4.4.6 運行中讀定時器/計數(shù)器 4.4.7 門控制位GATE的功能和使用方法(以T1為例) 第五章 MCS-51的串行口 5.1 串行口的結(jié)構(gòu) 5.1.1 串行口控制寄存器SCON 5.1.2 特殊功能寄存器PCON 5.2 串行口的工作方式 5.2.1 方式0 5.2.2 方式1 5.2.3 方式2 5.2.4 方式3 5.3 多機通訊 5.4 波特率的制定方法 5.4.1 波特率的定義 5.4.2 定時器T1產(chǎn)生波特率的計算 5.5 串行口的編程和應(yīng)用 5.5.1 串行口方式1應(yīng)用編程(雙機通訊) 5.5.2 串行口方式2應(yīng)用編程 5.5.3 串行口方式3應(yīng)用編程(雙機通訊) 第六章 MCS-51的中斷系統(tǒng) 6.1 中斷請求源 6.2 中斷控制 6.2.1 中斷屏蔽 6.2.2 中斷優(yōu)先級優(yōu) 6.3 中斷的響應(yīng)過程 6.4 外部中斷的響應(yīng)時間 6.5 外部中斷的方式選擇 6.5.1 電平觸發(fā)方式 6.5.2 邊沿觸發(fā)方式 6.6 多外部中斷源系統(tǒng)設(shè)計 6.6.1 定時器作為外部中斷源的使用方法 6.6.2 中斷和查詢結(jié)合的方法 6.6.3 用優(yōu)先權(quán)編碼器擴展外部中斷源 第七章 MCS-51單片機擴展存儲器的設(shè)計 7.1 概述 7.1.1 只讀存儲器 7.1.2 可讀寫存儲器 7.1.3 不揮發(fā)性讀寫存儲器 7.1.4 特殊存儲器 7.2 存儲器擴展的基本方法 7.2.1 MCS-51單片機對存儲器的控制 7.2.2 外擴存儲器時應(yīng)注意的問題 7.3 程序存儲器EPROM的擴展 7.3.1 程序存儲器的操作時序 7.3.2 常用的EPROM芯片 7.3.3 外部地址鎖存器和地址譯碼器 7.3.4 典型EPROM擴展電路 7.4 靜態(tài)數(shù)據(jù)存儲的器擴展 7.4.1 外擴數(shù)據(jù)存儲器的操作時序 7.4.2 常用的SRAM芯片 7.4.3 64K字節(jié)以內(nèi)SRAM的擴展 7.4.4 超過64K字節(jié)SRAM擴展 7.5 不揮發(fā)性讀寫存儲器擴展 7.5.1 EPROM擴展 7.5.2 SRAM掉電保護電路 7.6 特殊存儲器擴展 7.6.1 雙口RAMIDT7132的擴展 7.6.2 快擦寫存儲器的擴展 7.6.3 先進先出雙端口RAM的擴展 第八章 MCS-51擴展I/O接口的設(shè)計 8.1 擴展概述 8.2 MCS-51單片機與可編程并行I/O芯片8255A的接口 8.2.1 8255A芯片介紹 8.2.2 8031單片機同8255A的接口 8.2.3 接口應(yīng)用舉例 8.3 MCS-51與可編程RAM/IO芯片8155H的接口 8.3.1 8155H芯片介紹 8.3.2 8031單片機與8155H的接口及應(yīng)用 8.4 用MCS-51的串行口擴展并行口 8.4.1 擴展并行輸入口 8.4.2 擴展并行輸出口 8.5 用74LSTTL電路擴展并行I/O口 8.5.1 用74LS377擴展一個8位并行輸出口 8.5.2 用74LS373擴展一個8位并行輸入口 8.5.3 MCS-51單片機與總線驅(qū)動器的接口 8.6 MCS-51與8253的接口 8.6.1 邏輯結(jié)構(gòu)與操作編址 8.6.2 8253工作方式和控制字定義 8.6.3 8253的工作方式與操作時序 8.6.4 8253的接口和編程實例 第九章 MCS-51與鍵盤、打印機的接口 9.1 LED顯示器接口原理 9.1.1 LED顯示器結(jié)構(gòu) 9.1.2 顯示器工作原理 9.2 鍵盤接口原理 9.2.1 鍵盤工作原理 9.2.2 單片機對非編碼鍵盤的控制方式 9.3 鍵盤/顯示器接口實例 9.3.1 利用8155H芯片實現(xiàn)鍵盤/顯示器接口 9.3.2 利用8031的串行口實現(xiàn)鍵盤/顯示器接口 9.3.3 利用專用鍵盤/顯示器接口芯片8279實現(xiàn)鍵盤/顯示器接口 9.4 MCS-51與液晶顯示器(LCD)的接口 9.4.1 LCD的基本結(jié)構(gòu)及工作原理 9.4.2 點陣式液晶顯示控制器HD61830介紹 9.5 MCS-51與微型打印機的接口 9.5.1 MCS-51與TPμp-40A/16A微型打印機的接口 9.5.2 MCS-51與GP16微型打印機的接口 9.5.3 MCS-51與PP40繪圖打印機的接口 9.6 MCS-51單片機與BCD碼撥盤的接口設(shè)計 9.6.1 BCD碼撥盤 9.6.2 BCD碼撥盤與單片機的接口 9.6.3 撥盤輸出程序 9.7 MCS-51單片機與CRT的接口 9.7.1 SCIBCRT接口板的主要特點及技術(shù)參數(shù) 9.7.2 SCIB接口板的工作原理 9.7.3 SCIB與MCS-51單片機的接口 9.7.4 SCIB的CRT顯示軟件設(shè)計方法 第十章 MCS-51與D/A、A/D的接口 10.1 有關(guān)DAC及ADC的性能指標和選擇要點 10.1.1 性能指標 10.1.2 選擇ABC和DAC的要點 10.2 MCS-51與DAC的接口 10.2.1 MCS-51與DAC0832的接口 10.2.2 MCS-51同DAC1020及DAC1220的接口 10.2.3 MCS-51同串行輸入的DAC芯片AD7543的接口 10.3 MCS-51與ADC的接口 10.3.1 MCS-51與5G14433(雙積分型)的接口 10.3.2 MCS-51與ICL7135(雙積分型)的接口 10.3.3 MCS-51與ICL7109(雙積分型)的接口 10.3.4 MCS-51與ADC0809(逐次逼近型)的接口 10.3.5 8031AD574(逐次逼近型)的接口 10.4 V/F轉(zhuǎn)換器接口技術(shù) 10.4.1 V/F轉(zhuǎn)換器實現(xiàn)A/D轉(zhuǎn)換的方法 10.4.2 常用V/F轉(zhuǎn)換器LMX31簡介 10.4.3 V/F轉(zhuǎn)換器與MCS-51單片機接口 10.4.4 LM331應(yīng)用舉例 第十一章 標準串行接口及應(yīng)用 11.1 概述 11.2 串行通訊的接口標準 11.2.1 RS-232C接口 11.2.2 RS-422A接口 11.2.3 RS-485接口 11.2.4 各種串行接口性能比較 11.3 雙機串行通訊技術(shù) 11.3.1 單片機雙機通訊技術(shù) 11.3.2 PC機與8031單片機雙機通訊技術(shù) 11.4 多機串行通訊技術(shù) 11.4.1 單片機多機通訊技術(shù) 11.4.2 IBM-PC機與單片機多機通訊技術(shù) 11.5 串行通訊中的波特率設(shè)置技術(shù) 11.5.1 IBM-PC/XT系統(tǒng)中波特率的產(chǎn)生 11.5.2 MCS-51單片機串行通訊波特率的確定 11.5.3 波特率相對誤差范圍的確定方法 11.5.4 SMOD位對波特率的影響 第十二章 MCS-51的功率接口 12.1 常用功率器件 12.1.1 晶閘管 12.1.2 固態(tài)繼電器 12.1.3 功率晶體管 12.1.4 功率場效應(yīng)晶體管 12.2 開關(guān)型功率接口 12.2.1 光電耦合器驅(qū)動接口 12.2.2 繼電器型驅(qū)動接口 12.2.3 晶閘管及脈沖變壓器驅(qū)動接口 第十三章 MCS-51單片機與日歷的接口設(shè)計 13.1 概述 13.2 MCS-51單片機與實時日歷時鐘芯片MSM5832的接口設(shè)計 13.2.1 MSM5832性能及引腳說明 13.2.2 MSM5832時序分析 13.2.3 8031單片機與MSM5832的接口設(shè)計 13.3 MCS-51單片機與實時日歷時鐘芯片MC146818的接口設(shè)計 13.3.1 MC146818性能及引腳說明 13.3.2 MC146818芯片地址分配及各單元的編程 13.3.3 MC146818的中斷 13.3.4 8031單片機與MC146818的接口電路設(shè)計 13.3.5 8031單片機與MC146818的接口軟件設(shè)計 第十四章 MCS-51程序設(shè)計及實用子程序 14.1 查表程序設(shè)計 14.2 散轉(zhuǎn)程序設(shè)計 14.2.1 使用轉(zhuǎn)移指令表的散轉(zhuǎn)程序 14.2.2 使用地地址偏移量表的散轉(zhuǎn)程序 14.2.3 使用轉(zhuǎn)向地址表的散轉(zhuǎn)程序 14.2.4 利用RET指令實現(xiàn)的散轉(zhuǎn)程序 14.3 循環(huán)程序設(shè)計 14.3.1 單循環(huán) 14.3.2 多重循環(huán) 14.4 定點數(shù)運算程序設(shè)計 14.4.1 定點數(shù)的表示方法 14.4.2 定點數(shù)加減運算 14.4.3 定點數(shù)乘法運算 14.4.4 定點數(shù)除法 14.5 浮點數(shù)運算程序設(shè)計 14.5.1 浮點數(shù)的表示 14.5.2 浮點數(shù)的加減法運算 14.5.3 浮點數(shù)乘除法運算 14.5.4 定點數(shù)與浮點數(shù)的轉(zhuǎn)換 14.6 碼制轉(zhuǎn)換 ……
標簽: MCS 51 單片機 應(yīng)用設(shè)計
上傳時間: 2013-11-06
上傳用戶:xuanjie
主要性能 與MCS-51單片機產(chǎn)品兼容 8K字節(jié)在線系統(tǒng)可編程Flash存儲器 1000次擦寫周期 4.0V-5.5V工作電壓 全靜態(tài)操作:0Hz~33Hz 三級加密程序存儲器 256*8字節(jié)的內(nèi)部數(shù)據(jù)存儲器 32個可編程I/O口線 三個16位定時器/計數(shù)器 八個中斷源 全雙工UART串行通道 低功耗空閑和掉電模式 掉電后中斷可喚醒 看門狗定時器 雙數(shù)據(jù)指針 掉電標識符 快速編程周期 靈活I(lǐng)SP編程(字節(jié)和 模式) 綠色(-免費)工作包操作
上傳時間: 2013-10-29
上傳用戶:jisiwole
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1