隨著科學技術的發展,汽車結構不斷完善,人們對汽車的性能更加關注。汽車本身是一個復雜的系統,在使用過程中,隨著行駛里程的增加和使用時間的延續,汽車技術狀況可能不斷惡化,需要定期進行檢測。汽車底盤測功機是一種不解體檢驗汽車性能的檢測設備,采用現代電測和計算機技術,模擬汽車在各種路面行駛阻力,使汽車的道路試驗項目移至室內進行,減少室外環境變化對測試的影響,能夠很好的改善試驗人員的試驗環境和提高測試精度。 本文首先介紹了汽車底盤測功機的發展歷史和研究現狀,闡明了研究汽車底盤測功機測控系統的目的和意義,給出了汽車底盤測功機的結構和工作原理,在詳細分析汽車道路上和底盤測功機上運行受力情況的基礎上,建立了測功機電模擬模型。采用電模擬阻力加載裝置,不僅省去了繁瑣的慣性飛輪裝置,簡化了底盤測功機的結構,而且實現了慣性阻力的無級模擬。在系統硬件上,設計了轉速轉矩信號的采集電路和前端信號處理電路,提高了采集數據的準確性,保證系統的精度,并給出了勵磁控制電路的設計與實現。在通訊上,設計CAN和USB互相轉化的接口電路,不僅實現上下位機之間的通訊,而且還突破了傳統底盤測功機上下位機通訊速率慢的瓶頸。在控制策略上,采用積分分離PID算法,實現轉速、勵磁電流和轉矩、勵磁電流的兩個雙閉環控制器,滿足了汽車底盤測功機不同運行狀況的需求。在軟件上,采用模塊化編程的思想,從而增強了程序的可移植性和靈活性。最后,構建了實驗平臺,對系統進行了實驗研究,實驗結果表明:系統能滿足汽車性能測試的要求。
上傳時間: 2013-06-12
上傳用戶:問題問題
以諧波抑制,無功補償為主要功能的有源電力濾波器的基本理論已經成熟,但是市場尚無成熟的諧波有源抑制產品,同時電網諧波問題日益突出,因此需要對有源電力濾波器進行產業化應用研究。并聯有源電力濾波器以其安裝、維護方便,成為商用化產品的主流。所以本文針對并聯有源電力濾波器,展開產業化應用研究。 本文研究工作首先由如下工程問題引出:并聯有源電力濾波器在補償辦公樓電氣負載產生的諧波電流時,會出現諧波放大現象。辦公樓電氣負載主要是計算機、開關電源、不間斷電源、電壓型變頻器等,這些都是電壓型諧波源.本文以電容濾波型整流電路(電壓型諧波源)的分析作為切入點,基于“分段線性化”方法,對并聯有源電力濾波器補償電容濾波型整流負載進行了穩態分析,得到系統的電流和電壓波形,進而獲得其頻譜特性。通過本文所述穩態分析方法,可以從理論上理解并聯有源電力濾波器補償電容濾波型整流負載的工作過程,對有源電力濾波器的應用研究具有重要的理論和實際意義。 本文在分析辦公樓負載電氣特性的基礎上,建立了有源電力濾波器補償容性負載的簡化模型,依據該模型分析了負載中容性元件的電容值與諧波電流放大之間的關系;為了克服諧波放大現象,本文首先通過負載電流采樣環節后加裝濾波器的方式,將電流諧振頻率分量從采樣值中濾除,雖然達到了抑制諧波放大的目的,但是由于延時的引入,使得補償后網側電流畸變率(THD)急劇升高;然后根據這一思路,采用基于快速傅立葉變換(FFT)的有選擇諧波補償方法將電流諧振頻率分量從負載電流采樣值中濾除,使得系統在諧振頻率處變為開環控制,使系統穩定。經過對辦公樓負載的實際并網諧波補償實驗證明基于FFT的有選擇諧波補償方法對于抑制諧波放大是有效的。本創新點的研究工作對于實際工程應用具有參考價值。 為了滿足大容量的諧波抑制要求,本文提出了模塊化有源電力濾波器并聯補償方案,該方案的特點是模塊化結構及N+1冗余并聯控制策略、主從總線結構及主機產生、負載電流檢測方案以及并聯均流策略。主機產生及負載電流檢測是這一并聯方案的突出特點,體現了本文的創新性工作。本文還對多模塊并聯系統進行了建模和穩定性研究;依據模塊化并聯補償方案,在省科技計劃重點項目的支持下,對有源電力濾波器進行產業化研究,從項目方案、設計、器件選型,樣機調試、滿功率運行及性能檢測、樓宇負載與工業負載的實際并網實驗,直至工業樣機定型,對有源電力濾波器的產業化應用研究起了較大的推進作用,支撐項目目前已經有定型的工業化產品推出。 全文圍繞上述三個方面展開,章節分排如下:(1)第一章從實際應用角度,總結闡述了有源電力濾波技術在諧波檢測、電流跟蹤控制、拓撲結構三個方面的研究進展;(2)第二章對并聯有源電力濾波器補償電容濾波型整流負載進行了穩態分析;(3)第三章分析了有源電力濾波器補償容性負載時出現的諧波放大現象,并利用FFT方法使得系統在諧振頻率處變為開環控制,達到抑制諧波放大的目的;(4)第四章、第五章提出有源電力濾波器模塊化并聯方案,并詳細說明了模塊化并聯系統的設計和實驗;(5)第六章對全文進行了總結,并對今后的研究工作進行了展望。
上傳時間: 2013-04-24
上傳用戶:JANEM
隨著電力電子技術的發展,交流電源系統的電能質量問題受到越來越多的關注。傳統的整流環節廣泛采用二極管不控整流和晶閘管相控整流電路,向電網注入了大量的諧波及無功,造成了嚴重的污染。提高電網側功率因數以及降低輸入電流諧波成為一個研究熱點。功率因數校正技術是減小用電設備對電網造成的諧波污染,提高功率因數的一項有力措施。本文所做的主要工作包括以下幾部分: 1.分析了單位功率因數三相橋式整流的工作原理,這種整流拓撲從工作原理上可以分成兩部分:功率因數補償網絡和常規整流網絡。在此基礎上,為整流電路建立了精確的數學模型。 2.這種單位功率因數三相橋式整流的輸入電感是在額定負載下計算出的,當負載發生變化時,其功率因數會降低。針對這種情況,提出了一種新的控制方法。常規整流網絡向電網注入的諧波可以由功率因數補償網絡進行補償,所以輸入功率因數相應提高。負載消耗的有功由電網提供,補償網絡既不消耗有功也不提供任何有功。根據功率平衡理論,可以確定參考補償電流。雙向開關的導通和關斷由滯環電流控制確定。在這一方法的控制下,雙向開關工作在高頻下,因此輸入電感值相應降低。仿真和實驗結果都表明:新的控制方法下,負載變化時,輸入電流仍接近于正弦,功率因數接近1。 3.根據IEEE-519標準對諧波電流畸變率的要求,為單位功率因數三相橋式整流提出了另一種控制方法。該方法綜合考慮單次諧波電流畸變率、總諧波畸變率、功率因數、有功消耗等性能指標,并進行優化,推導出最優電流補償增益和相移。將三相負載電流通過具有最優電流補償增益和相移的電流補償濾波器,得到補償后期望的電網電流,驅動雙向開關導通和關斷。仿真和實驗都收到了滿意的效果,使這一整流橋可以工作在較寬的負載范圍內。 4.單位功率因數三相橋式整流中直流側電容電壓隨負載的波動而波動,為提高其動、靜態性能,將簡單自適應控制應用到了直流側電容電壓的控制中,并提出利用改進的二次型性能指標修改自適應參數的方法,可以在實現對參考模型跟蹤的同時又不使控制增量過大,與常規的PI型簡單自適應控制相比在適應律的計算中引入了控制量的增量和狀態誤差在k及k+1時刻的采樣值。利用該方法為直流側電壓設計了控制器,并進行了仿真與實驗研究,結果表明與PI型適應律相比,新的控制器能提高系統的動態響應性能,負載變化時系統的魯棒性更強。
上傳時間: 2013-06-15
上傳用戶:WS Rye
三相逆變器作為交流供電電源的主要部分,廣泛地應用于電動車、電力設備、產業設備、交通車輛等領域。逆變器的并聯控制技術以其廣泛的應用前景也得到越來越深入地研究。人們對逆變電源的要求越來越高,高性能、高可靠性的大功率逆變器就是當今逆變電源的發展趨勢之一。提高逆變電源容量主要有兩個途徑,設計大功率的逆變器和采用逆變器并聯技術實現電源模塊化。 為此,本文以兩臺400kVA組合式三相逆變器為對象,采用全數字化控制方式,主要研究了大功率三相逆變器的波形控制技術和并聯控制技術。本文圍繞大功率組合式三相逆變器,對其主電路結構、系統的數學模型、波形控制技術以及并聯系統模型、并聯控制方案進行了較為詳細的分析和研究。分析了適用于大功率的組合式三相逆變器結構,并給出了400kVA組合式三相逆變器的主電路設計。建立和分析了組合式三相逆變器在ABC、αβ、dq 坐標系下的數學模型。針對大功率組合式三相逆變器,采用在dq 坐標系下的三相電壓閉環統一控制方案。為了使大功率三相逆變器得到較好的輸出電壓波形質量,采用PID 瞬時值電壓反饋控制和重復控制并聯結合的控制方案。分析了PID 控制器和重復控制器的原理,并針對400kVA 三相逆變器的系統性能,給出了相應數字PID 控制器和重復控制器的設計。并利用Matlab 建立了系統的仿真模型,給出了理論研究結果。提出了有效提高系統動態性能的兩種方法:加負載電流前饋和動態過程中強制改變改變調制比。介紹了大功率三相逆變器的短路限流保護技術,提出了采用瞬時值限流電路和單獨的軟件限流環相結合的方案,保證大功率三相逆變器在短路時自動限流保護。對兩臺大功率三相逆變器組成的并聯系統的結構、環流特性及逆變器的輸出功率進行了分析。詳細分析了輸出阻抗特性不同時,逆變器環流和輸出功率分配的差異,得出了輸出阻抗對環流和功率影響的一般規律。針對大功率三相逆變器并聯系統,采用基于功率誤差的分散邏輯控制方案。分析了基于功率誤差的分散邏輯控制原理,逆變器輸出功率的檢測和母線信號綜合的脈寬調制原理。根據400kVA 三相逆變器并聯系統的輸出阻抗特性,采用了無功調節輸出電壓幅值和同步鎖相實現相位同步的并聯控制策略。 本文最后在兩臺400kVA組合式三相逆變器樣機上得到了實驗驗證。實驗結果進一步驗證了大功率三相逆變器的波形控制和并聯控制策略有效可行性。
上傳時間: 2013-07-03
上傳用戶:coolloo
本書主要闡述設計射頻與微波功率放大器所需的理論、方法、設計技巧,以及將分析計算與計算機輔助設計相結合的優化設計方法。這些方法提高了設計效率,縮短了設計周期。本書內容覆蓋非線性電路設計方法、非線性主動設備建模、阻抗匹配、功率合成器、阻抗變換器、定向耦合器、高效率的功率放大器設計、寬帶功率放大器及通信系統中的功率放大器設計。 本書適合從事射頻與微波動功率放大器設計的工程師、研究人員及高校相關專業的師生閱讀。 作者簡介 Andrei Grebennikov是M/A—COM TYCO電子部門首席理論設計工程師,他曾經任教于澳大利亞Linz大學、新加坡微電子學院、莫斯科通信和信息技術大學。他目前正在講授研究班課程,在該班上,本書作為國際微波年會論文集。 目錄 第1章 雙口網絡參數 1.1 傳統的網絡參數 1.2 散射參數 1.3 雙口網絡參數間轉換 1.4 雙口網絡的互相連接 1.5 實際的雙口電路 1.5.1 單元件網絡 1.5.2 π形和T形網絡 1.6 具有公共端口的三口網絡 1.7 傳輸線 參考文獻 第2章 非線性電路設計方法 2.1 頻域分析 2.1.1 三角恒等式法 2.1.2 分段線性近似法 2.1.3 貝塞爾函數法 2.2 時域分析 2.3 NewtOn.Raphscm算法 2.4 準線性法 2.5 諧波平衡法 參考文獻 第3章 非線性有源器件模型 3.1 功率MOSFET管 3.1.1 小信號等效電路 3.1.2 等效電路元件的確定 3.1.3 非線性I—V模型 3.1.4 非線性C.V模型 3.1.5 電荷守恒 3.1.6 柵一源電阻 3.1.7 溫度依賴性 3.2 GaAs MESFET和HEMT管 3.2.1 小信號等效電路 3.2.2 等效電路元件的確定 3.2.3 CIJrtice平方非線性模型 3.2.4 Curtice.Ettenberg立方非線性模型 3.2.5 Materka—Kacprzak非線性模型 3.2.6 Raytheon(Statz等)非線性模型 3.2.7 rrriQuint非線性模型 3.2.8 Chalmers(Angek)v)非線性模型 3.2.9 IAF(Bemth)非線性模型 3.2.10 模型選擇 3.3 BJT和HBT汀管 3.3.1 小信號等效電路 3.3.2 等效電路中元件的確定 3.3.3 本征z形電路與T形電路拓撲之間的等效互換 3.3.4 非線性雙極器件模型 參考文獻 第4章 阻抗匹配 4.1 主要原理 4.2 Smith圓圖 4.3 集中參數的匹配 4.3.1 雙極UHF功率放大器 4.3.2 M0SFET VHF高功率放大器 4.4 使用傳輸線匹配 4.4.1 窄帶功率放大器設計 4.4.2 寬帶高功率放大器設計 4.5 傳輸線類型 4.5.1 同軸線 4.5.2 帶狀線 4.5.3 微帶線 4.5.4 槽線 4.5.5 共面波導 參考文獻 第5章 功率合成器、阻抗變換器和定向耦合器 5.1 基本特性 5.2 三口網絡 5.3 四口網絡 5.4 同軸電纜變換器和合成器 5.5 wilkinson功率分配器 5.6 微波混合橋 5.7 耦合線定向耦合器 參考文獻 第6章 功率放大器設計基礎 6.1 主要特性 6.2 增益和穩定性 6.3 穩定電路技術 6.3.1 BJT潛在不穩定的頻域 6.3.2 MOSFET潛在不穩定的頻域 6.3.3 一些穩定電路的例子 6.4 線性度 6.5 基本的工作類別:A、AB、B和C類 6.6 直流偏置 6.7 推挽放大器 6.8 RF和微波功率放大器的實際外形 參考文獻 第7章 高效率功率放大器設計 7.1 B類過激勵 7.2 F類電路設計 7.3 逆F類 7.4 具有并聯電容的E類 7.5 具有并聯電路的E類 7.6 具有傳輸線的E類 7.7 寬帶E類電路設計 7.8 實際的高效率RF和微波功率放大器 參考文獻 第8章 寬帶功率放大器 8.1 Bode—Fan0準則 8.2 具有集中元件的匹配網絡 8.3 使用混合集中和分布元件的匹配網絡 8.4 具有傳輸線的匹配網絡 8.5 有耗匹配網絡 8.6 實際設計一瞥 參考文獻 第9章 通信系統中的功率放大器設計 9.1 Kahn包絡分離和恢復技術 9.2 包絡跟蹤 9.3 異相功率放大器 9.4 Doherty功率放大器方案 9.5 開關模式和雙途徑功率放大器 9.6 前饋線性化技術 9.7 預失真線性化技術 9.8 手持機應用的單片cMOS和HBT功率放大器 參考文獻
上傳時間: 2013-04-24
上傳用戶:W51631
由于絕緣柵雙極晶體管IGBT具有工作頻率高、處理功率大和驅動簡單等諸多優點,在電力電子設備、尤其是中大型功率的電力電子設備中的應用越來越廣泛。但是,IGBT失效引發的設備故障往往會對生產帶來巨大影響和損失,因此,對IGBT的失效研究具有十分重要的應用意義。 本文在深入分析IGBT器件工作原理和工作特性的基礎上,采用雙極傳輸理論聯立求解電子和空穴的傳輸方程,得到了穩態時電子和空穴電流的表達式,對造成IGBT失效的各種因素進行了詳細分析。應用MATLAB軟件,對硅參數的熱導率、載流子濃度、載流子壽命、電子遷移率、空穴遷移率和雙極擴散系數等進行了仿真,深入研究了IGBT的失效因素,得到了IGBT失效的主要原因是發生擎住效應以及泄漏電流導致IGBT延緩失效的有用結論。并且,進行了IGBT動態模型的設計和仿真,對IGBT在短路情況下的失效機理進行了深入研究。 考慮到實際設備中的IGBT在使用中經常會發生反復過流這一問題,通過搭建試驗電路,著重對反復過流對IGBT可能帶來的影響進行了試驗研究,探討了IGBT因反復過流導致的累積失效的變化規律。本文研究結果對于正確判斷IGBT失效以及失效程度、進而正確判斷和預測設備的可能故障,具有一定的應用參考價值。
上傳時間: 2013-08-04
上傳用戶:lrx1992
本文以感應加熱電源為研究對象,闡述了感應加熱電源的基本原理及其發展趨勢。對感應加熱電源常用的兩種拓撲結構--電流型逆變器和電壓型逆變器做了比較分析,并分析了感應加熱電源的各種調功方式。在對比幾種功率調節方式的基礎上,得出在整流側調功有利于高頻感應加熱電源頻率和功率的提高的結論,選擇了不控整流加軟斬波器調功的感應加熱電源作為研究對象。針對傳統硬斬波調功式感應加熱電源功率損耗大的缺點,采用軟斬波調功方式,設計了一種零電流開關準諧振變換器ZCS-QRCs(Zero-current-switching-Quasi-resonant)倍頻式串聯諧振高頻感應加熱電源。介紹了該軟斬波調功器的組成結構及其工作原理,通過仿真和實驗的方法研究了該軟斬波器的性能,從而得出該軟斬波器非常適合大功率高頻感應加熱電源應用場合的結論。同時設計了功率閉環控制系統和PI功率調節器,將感應加熱電源的功率控制問題轉化為Buck斬波器的電壓控制問題。 針對目前IGBT器件頻率較低的實際情況,本文提出了一種新的逆變拓撲-通過IGBT的并聯來實現倍頻,從而在保證感應加熱電源大功率的前提下提高了其工作頻率,并在分析其工作原理的基礎上進行了仿真,驗證了理論分析的正確性,達到了預期的效果。另外,本文還設計了數字鎖相環(DPLL),使逆變器始終保持在功率因數近似為1的狀態下工作,實現電源的高效運行。最后,分析并設計了IGBT的緩沖吸收電路。 本文第五章設計了一臺150kHz、10KW的倍頻式感應加熱電源實驗樣機,其中斬波器頻率為20kHz,逆變器工作頻率為150kHz(每個IGBT工作頻率為75kHz),控制核心采用TI公司的TMS320F2812DSP控制芯片,簡化了系統結構。實驗結果表明,該倍頻式感應加熱電源實現了斬波器和逆變器功率器件的軟開關,有效的減小了開關損耗,并實現了數字化,提高了整機效率。文章給出了整機的結構設計,直流斬波部分控制框圖,逆變控制框圖,驅動電路的設計和保護電路的設計。同時,給出了關鍵電路的仿真和實驗波形。 實驗證明,以上分析和電路設計都是行之有效的,在實驗中取得很好的效果。
上傳時間: 2013-05-20
上傳用戶:lyy1234
本文從感應加熱基本原理出發,概述了感應加熱技術的現狀及發展趨勢,在分析串聯諧振逆變器各種功率控制策略原理及優缺點的基礎上,對于移相調功輕載時的缺陷,本文將有限雙極性PWM法引入逆變器輕載時的輸出控制,通過DPLL鎖相,使滯后橋臂的電壓與電流始終保持一定的相位,同時結合非輕載時移相功率調節良好的特性,提出了一種基于DSP的新型功率控制策略,克服了傳統移相全橋的缺點,使得高頻逆變電源在輕載條件下仍能實現軟開關,且輕載時電流連續調節范圍廣,三角畸變程度輕于PSPWM,大幅度的擴大了負載的適用范圍,提高了電源整機效率。 在對新型PWM功率控制串聯諧振逆變器工作過程進行分析的基礎上,解決了所有開關管的軟開關問題;并通過分析功率輸出單元的輸出電壓、電流、功率等,進而得到一個脈沖周期的輸出電壓、電流及功率的計算式。在這些理論分析的基礎上,本文設計了基于新型PWM功率控制策略的感應加熱電源實驗系統,對主電路各元器件進行了精確計算與設計,設計了以TMS320LF2407A為核心的控制與保護電路,并對DSP外圍電路進行設計,同時編寫了基于新型PWM功率控制策略,以數字環相環及功率控制算法為核心的DSP程序,相關的仿真與實驗系統得到的輸出波形很好的驗證了新型PWM控制策略的可行性。
上傳時間: 2013-04-24
上傳用戶:gokk
目前以IGBT為開關器件的串聯諧振感應加熱電源在大功率和高頻下的研究是一個熱點和難點,為彌補采用模擬電路搭建而成的控制系統的不足,對感應加熱電源數字化控制研究是必然趨勢。本文以串聯諧振型感應加熱電源為研究對象,采用TI公司的TMS320F2812為控制芯片實現電源控制系統的數字化。 首先分析了串聯諧振型感應加熱電源的負載特性和調功方式,確定了采用相控整流調功控制方式,接著分析了串聯諧振逆變器在感性和容性狀態下的工作過程確定了系統安全可靠的運行狀態。本文設計了電源主電路參數并在Matlab/Simulink仿真環境下搭建了整個系統,仿真分析了串聯諧振型感應加熱電源的半壓啟動模式及鎖相環頻率跟蹤能力和功率調節控制。 針對感應加熱電源的數字控制系統,在討論了晶閘管相控觸發和鎖相環的工作原理及研究現狀下詳細地分析了本課題基于DSP晶閘管相控脈沖數字觸發和數字鎖相環(DPLL)的實現,得出它們各自的優越性,同時分析了感應加熱電源的功率控制策略,得出了采用數字PI積分分離的控制方法。本文采用TI公司的TMS320F2812作為系統的控制芯片,搭建了控制系統的DSP外圍硬件電路,分析了系統的運行過程并編寫了整個控制系統的程序。最后對控制系統進行了試驗,驗證了理論分析的正確性和控制方案的可行性。
上傳時間: 2013-05-25
上傳用戶:kennyplds
本課題是針對陜西美泰電氣有限公司的一個開發研究項目。在國內,中頻大功率感應加熱電源雖然有許多研究,但是在控制方式上與選取的功率元件上卻有不同,特別是針對DSP控制與選取IGBT作為功率元件的相關文獻較少。數字化控制將是一種趨勢,而IGBT控制靈活,驅動簡單,從而將逐步取代晶閘管,GTO等元件。 本課題主要以并聯諧振型感應加熱電源為研究對象,采用了IGBT為功率開關元件的主電路,比較了直流調功和逆變調功的優缺點,最終選擇了三相全控晶閘管整流的調功方式,同時也描述了重疊時間對逆變器的影響。計算分析了整流側和逆變側的必要參數以及并聯諧振槽路的參數,本文在MATLAB/Simulink環境下建立了10kHz/500kW并聯諧振型感應加熱系統的仿真模型,對整流調功、鎖相環頻率跟蹤、逆變器的啟動等仿真波形進行了重點分析并得出結論。在此理論基礎上,設計了基于DSPTMS320F2812 10kHz/500kW感應加熱電源的控制器,其中重點研究了閉環調功控制系統、鎖相環頻率跟蹤系統、重疊時間、整流側晶閘管脈沖觸發產生和相序判斷以及逆變器啟動的全數字化控制。同時,設計了過壓過流保護電路以及外圍采樣電路、檢測電路,特別是過壓保護,本文給出了一種箝位思想并對此思想進行了仿真證明了其正確性和可行性,以便使電源和IGBT更安全的工作。最后,對本文所提出的控制方案進行實驗驗證,證明了本文理論計算分析的正確性和控制方案的可行性。
上傳時間: 2013-06-09
上傳用戶:czh415