GJB/Z 99-1997 系統安全性工程手冊為GJB 900《系統安全性通用大綱》的支持標準,在J用系統研制中怪車和實施GJB 900提供一套較為完整的系統安全管理、系統安全分析、系統安全設計和驗證的程序和方法,以促進我過J用系統安全性水平。
標簽: 系統安全性
上傳時間: 2022-04-08
上傳用戶:wangshoupeng199
在疫情下,世界各國都面對著嚴峻的挑戰,人民的生活模式和商業模式都因為疫情爆發而需要作出改變,例如減少人流在外的活動和時間,減少社交活動等,以降低因為人與人之間的接觸而導致的病毒傳播風險。 疫情期間,大多數人與人之間的社交活動已經停止,但社會的商業活動還是一直在進行, 這避免不了會產生人與人之間的互動和接觸。為了減少人與人之間的接觸,我們只好使用互聯網來保持人與人和公司與公司之間的商業交往,從而使商業活動在疫情期間可以繼續進行。 目前,最普遍的是使用電腦或手機連接互聯網,經過大氣電波可以聽到對方的聲音和看見對方的影像。這種方式在個人對個人的互聯網連接使用是足夠,而且效果也不錯。但如果在公司對公司的會議中,各有一大群人圍在一起進行會議,單純電腦與電腦或手機與手機的連接,出來的效果恐怕不會好。 首先,傳統電腦和手機在原始設計的時候,只針對個人應用,它并沒有預計在今天疫情期間,公司之間會廣泛的用它來做群組會議的功能。其二,電腦的收音只是固定在特定的方向,會議期間不同的人在不同的方向講話,它的拾音能力絕對不能滿足需求。其三,電腦和手機沒有使用專門的語音芯片做語音處理,會議期間會出現雜音,嘯叫,拾音不良 … …等等的情況,嚴重影響會議的質量和效果。 因此,選用一個帶有專門語音處理功能的外置拾音speaker,對會議的質量會大大提升。本文會對這產品的要求做詳細的介紹。
上傳時間: 2022-04-11
上傳用戶:
反激式開關電源變壓器設計的詳細步驟85W反激變壓器設計的詳細步驟 1. 確定電源規格. 1).輸入電壓范圍Vin=90—265Vac; 2).輸出電壓/負載電流:Vout1=42V/2A, Pout=84W 3).轉換的效率=0.80 Pin=84/0.8=105W 2. 工作頻率,匝比, 最低輸入電壓和最大占空比確定. Vmos*0.8>Vinmax+n(Vo+Vf)600*0.8>373+n(42+1)得n<2.5Vd*0.8>Vinmax/n+Vo400*0.8>373/n+42得n>1.34 所以n取1.6最低輸入電壓Vinmin=√[(Vacmin√2)* (Vacmin√2)-2Pin(T/2-tc)/Cin=(90√2*90√2-2*105*(20/2-3)/0.00015=80V取:工作頻率fosc=60KHz, 最大占空比Dmax=n(Vo+Vf)/[n(Vo+Vf)+Vinmin]= 1.6(42+1)/[1.6(42+1)+80]=0.45 Ton(max)=1/f*Dmax=0.45/60000=7.5us 3. 變壓器初級峰值電流的計算. Iin-avg=1/3Pin/Vinmin=1/3*105/80=0.4AΔIp1=2Iin-avg/D=2*0.4/0.45=1.78AIpk1=Pout/?/Vinmin*D+ΔIp1=84/0.8/80/0.45=2.79A 4. 變壓器初級電感量的計算. 由式子Vdc=Lp*dip/dt,得: Lp= Vinmin*Ton(max)/ΔIp1 =80*0.0000075/1.78 =337uH 取Lp=337 uH 5.變壓器鐵芯的選擇. 根據式子Aw*Ae=Pt*1000000/[2*ko*kc*fosc*Bm*j*?],其中: Pt(標稱輸出功率)= Pout=84W Ko(窗口的銅填充系數)=0.4 Kc(磁芯填充系數)=1(對于鐵氧體), 變壓器磁通密度Bm=1500Gs j(電流密度): j=4A/mm2;Aw*Ae=84*1000000/[2*0.4*1*60*103*1500Gs*4*0.80]=0.7cm4 考慮到繞線空間,選擇窗口面積大的磁芯,查表: ER40/45鐵氧體磁芯的有效截面積Ae=1.51cm2 ER40/45的功率容量乘積為 Ap = 3.7cm4 >0.7cm4 故選擇ER40/45鐵氧體磁芯. 6.變壓器初級匝數 1).由Np=Vinmin*Ton/[Ae*Bm],得: Np=80*7.5*10n-6/[1.52*10n-4*0.15] =26.31 取 Np =27T 7. 變壓器次級匝數的計算. Ns1(42v)=Np/n=27/1.6=16.875 取Ns1 = 17T Ns2(15v)=(15+1)* Ns1/(42+1)=6.3T 取Ns2 = 7T
上傳時間: 2022-04-15
上傳用戶:
費恩曼(R.P.Feynman)1918年生于布魯克林區,1942年在普林斯頓獲得博士學位。第二次世界大戰期間在洛斯阿拉莫斯,盡管當時他還很年輕,但已在曼哈頓計劃中發揮了重要作用。以后,他在康奈爾大學和加利福尼亞理工學院任教。1965年,因他在量子電動力學方面的工作和朝永振一郎及施溫格(J.Schwinger)同獲諾貝爾物理學獎。費因曼博士獲得諾貝爾獎是由于成功地解決了量子電動力學理論問題,他也創立了說是液氦中起流動性現象的數學理論。此后,他和蓋爾曼(M.Gell-Mann)在B衰變等弱相互作用領域內做出了奠基性的工作。在以后的幾年里,他在夸克理論的發展中起了關鍵性的作用,提出了他的高能質子碰撞過程的部分子模型。除了這些成就之外,費恩曼博士將新的基本計算技術及記號法引時物理學,首先是無處不在的費恩曼圖,在近代科學歷史中,它比任何其他數學形式描述都更大地改變了對基本物理過程形成概念及進行計算的方法。費恩曼是一位卓越的教育家。在他區得的許多獎項中,他對1972年獲得的奧斯特教學獎章特別感到自豪。在1963年第一次出版的《費恩曼物理學講義》被《科學叛國人》雜志的一位評論員描寫為“咬不動但富于營養并且津津有味。25年后它仍是教師和最好的初學學生的指導書”。為了使外行的公眾增加對物理學的了解,費恩曼博士寫了《物理定律和量子電動力學的性質:光和物質的奇特理論》。他還是許多高級出版物的作者,這些都成為研究人員和學生的經典參考書和教科書。費恩曼是一個活躍的公眾人物。他在挑戰者號調查委員會里的工作是從所周知的,特別是他的著名的O型環對寒冷的敏感性的演示,這是一個優美的實驗,除了一杯冰水以外其他什么也不需要。費恩曼博士1960年在加利福尼亞州課程促進會中的工作卻很少人知道,他在會上抨擊了教材的平庸。僅僅羅列費恩曼的科學和教育成就并沒有恰當抓信這個人的本質。即使是他 最最技術性的出版物的讀者都知識道,費恩曼活躍的多面的人格在他所有的工作中都閃閃發光。除了作為物理學家,在各種不同的場合下他變成不同的人物:有進是無線電修理工,有時是鎖具收藏家,藝術家、舞蹈家、邦戈(bongo)鼓手,甚至瑪雅象形文字的解釋者。對他的世界人們永遠好奇,他是一個典型的經驗主義者。費恩曼于1998年2月15日在洛杉磯逝世。
標簽: 物理學
上傳時間: 2022-04-24
上傳用戶:得之我幸78
宏晶 STC15F2K60S2開發板配套軟件源碼 基礎例程30例/**********************基于STC15F2K60S2系列單片機C語言編程實現使用如下頭文件,不用另外再包含"REG51.H"#include <STC15F2K60S2.h>***********************/#include "STC15F2K60S2.H"//#include "REG51.H" //sfr P4 = 0xC0;#define uint unsigned int #define uchar unsigned char /**********************引腳別名定義***********************/sbit SEL=P4^3; // LED和數碼管選擇引腳 高:LED有效 低:數碼管有效 // SEL連接的單片機引腳必須為帶有上拉電阻的引腳 或將其直接連接VCC#define data P2 // 數據輸入定義 /**********************函數名稱:Delay_1ms功能描述:延時入口參數:unsigned int t 表示要延時t個1ms 出口參數:無備注:通過參數t,控制延時的時間長短***********************/void Delay_1ms(uint t){ uchar j; for(;t>0;t--) for(j=110;j>0;j--) ;}/**********************函數名稱:Led_test功能描述:對8個二極管進行測試,依次輪流點亮8個二極管入口參數:無出口參數:無備注: ***********************/void Led_test(){ uchar G_value=0x01; // 給變量賦初值 SEL=1; //高電平LED有效 while(1) { data=G_value; Delay_1ms(10000); G_value=G_value<<1; if(G_value==0x00) { data=G_value; Delay_1ms(10000); G_value=0x01; } }}/***********************主函數************************/void main(){ ///////////////////////////////////////////////// //注意: STC15W4K32S4系列的芯片,上電后所有與PWM相關的IO口均為 // 高阻態,需將這些口設置為準雙向口或強推挽模式方可正常使用 //相關IO: P0.6/P0.7/P1.6/P1.7/P2.1/P2.2 // P2.3/P2.7/P3.7/P4.2/P4.4/P4.5 ///////////////////////////////////////////////// P4M1=0x00; P4M0=0x00; P2M0=0xff; P2M1=0x00; //將P2設為推挽 Led_test(); }
標簽: STC15F2K60S2
上傳時間: 2022-05-03
上傳用戶:
常用4000系列標準數字電路的中文名稱資料 型號 器件名稱 廠牌 備注 CD4000 雙3輸入端或非門+單非門 TI CD4001 四2輸入端或非門 HIT/NSC/TI/GOL CD4002 雙4輸入端或非門 NSC CD4006 18位串入/串出移位寄存器 NSC CD4007 雙互補對加反相器 NSC CD4008 4位超前進位全加器 NSC CD4009 六反相緩沖/變換器 NSC CD4010 六同相緩沖/變換器 NSC CD4011 四2輸入端與非門 HIT/TI CD4012 雙4輸入端與非門 NSC CD4013 雙主-從D型觸發器 FSC/NSC/TOS CD4014 8位串入/并入-串出移位寄存器 NSC CD4015 雙4位串入/并出移位寄存器 TI CD4016 四傳輸門 FSC/TI CD4017 十進制計數/分配器 FSC/TI/MOT CD4018 可預制1/N計數器 NSC/MOT CD4019 四與或選擇器 PHI CD4020 14級串行二進制計數/分頻器 FSC CD4021 08位串入/并入-串出移位寄存器 PHI/NSC CD4022 八進制計數/分配器 NSC/MOT CD4023 三3輸入端與非門 NSC/MOT/TI CD4024 7級二進制串行計數/分頻器 NSC/MOT/TI CD4025 三3輸入端或非門 NSC/MOT/TI CD4026 十進制計數/7段譯碼器 NSC/MOT/TI CD4027 雙J-K觸發器 NSC/MOT/TI CD4028 BCD碼十進制譯碼器 NSC/MOT/TI CD4029 可預置可逆計數器 NSC/MOT/TI CD4030 四異或門 NSC/MOT/TI/GOL CD4031 64位串入/串出移位存儲器 NSC/MOT/TI CD4032 三串行加法器 NSC/TI CD4033 十進制計數/7段譯碼器 NSC/TI CD4034 8位通用總線寄存器 NSC/MOT/TI CD4035 4位并入/串入-并出/串出移位寄存 NSC/MOT/TI CD4038 三串行加法器 NSC/TI CD4040 12級二進制串行計數/分頻器 NSC/MOT/TI CD4041 四同相/反相緩沖器 NSC/MOT/TI CD4042 四鎖存D型觸發器 NSC/MOT/TI CD4043 4三態R-S鎖存觸發器("1"觸發) NSC/MOT/TI CD4044 四三態R-S鎖存觸發器("0"觸發) NSC/MOT/TI CD4046 鎖相環 NSC/MOT/TI/PHI CD4047 無穩態/單穩態多諧振蕩器 NSC/MOT/TI CD4048 4輸入端可擴展多功能門 NSC/HIT/TI CD4049 六反相緩沖/變換器 NSC/HIT/TI CD4050 六同相緩沖/變換器 NSC/MOT/TI CD4051 八選一模擬開關 NSC/MOT/TI
上傳時間: 2022-05-05
上傳用戶:
JLink_V9.5 固件生成工具復制最新的JLinkARM.dll到這個目錄,然后運行makev9fw.exe,完成之后J-Link V9 ALL.bin就是最新的固件了,這個固件需要寫入mcu的0x08000000地址
標簽: jlink
上傳時間: 2022-05-22
上傳用戶:shjgzh
1、此方案是基于HC32L136K8TA-LQ64,內部帶段碼屏(LCD)驅動,可以直接驅動段碼屏,省去外部LCD管理芯片。而且是屬于超低功耗產品。深度睡眠0.5ua.7μA低速工作模式:CPU 和外設運行,從 Flash 運行程序。2、紅外測溫傳感器I2C通信居多,HC32L136K8TA-LQ64最高跑48MHz,可滿足硬件或軟件I2C通信。3、方案搭載潤石RS3221穩壓線性LDO,靜態電流1uA,300mA最大輸出電流。紅外測溫槍屬于電池低功耗產品,功耗要求和產品質量顯而易見。4、因為HC32L136K8TA-LQ64只有12BIT的ADC,顯然不能滿足紅外測溫傳感器微弱的數據變化,但接入一顆性價比極高的運放,外部紅外測溫傳器的微弱數據變化,MCU就可以完美的把數據獲取。
上傳時間: 2022-05-22
上傳用戶:
嵌入式Linux系統開發:基于Yocto Project 魯道夫 J. 斯特雷夫(Rudolf J. Streif) 著,中文版,清晰非掃描
上傳時間: 2022-05-28
上傳用戶:bluedrops
1997年,國際象棋名家卡斯帕羅夫象棋對弈IBM超級電腦深藍,最后結果是大師輸了。2016年,世界頂級圍棋高手李世石與AI圍棋對決,最后竟以1:4慘敗于谷歌阿爾法狗。今年4月,AI電競團隊OpenAI Five與人類戰隊對決《dota》,2:0 完勝世界冠軍OG戰隊。人工智能憑什么能夠戰勝人類?答案是AI背后的超級計算機算力。AI通過算力處理大量的相關數據,并以神經網絡不斷學習成長,最終獲得技能,戰勝人類選手。算力經濟,算力時代,算力改變世界,算力驅動未來。現在很多領域都在談論算力,到底什么是算力?
標簽: 人工智能
上傳時間: 2022-05-30
上傳用戶: