為了使計算機能更好的識別人臉表情,對基于Gabor小波變換的人臉表情識別方法進行了研究。首先對包含表情區域的靜態灰度圖像進行預處理,包括對確定的人臉表情區域進行尺寸和灰度歸一化,然后利用二維Gabor小波變換提取臉部表情特征,使用快速PCA方法對提取的Gabor小波特征初步降維。再在低維的空間中,利用Fisher準則提取那些有利于分類的特征,最后用SVM分類器進行分類。實驗結果表明,上述提出的方法比傳統的方法識別速度更快,能達到實時性的要求,并且具有很好的魯棒性,識別率高。
標簽:
Gabor
人臉
特征提取
上傳時間:
2013-11-08
上傳用戶:小眼睛LSL