在電學實驗中,為了得到我們所需要的電壓或電流,我們經常需要把滑線變阻器連接成分壓或限流兩種形式,對電源進行控制與調節。在實驗應用中,如何根據實驗條件和要求來正確選擇滑線變阻器的參數(阻值,額定電流)是我們必須掌握的技能。參數選擇合適,電壓(電流)就能準確、穩定地調節,實驗就能順利進行。選擇不當,實驗條件就不穩定,使實驗不能穩定進行,甚至損壞儀表。本實驗對這兩種的輸出特性進行研究,以指導我們合理設計與選用控制電路。
上傳時間: 2013-12-28
上傳用戶:guojin_0704
MAX29X是美國MAXIM公司生瓣的8階開關電容低通濾波器,由于價格便宜、使用方便、設計簡單,在通訊、信號自理等領域得到了廣泛的應用。本文就其工作原理、電氣參數、設計注意事項等問題作了討論,具有一定的實用參考價值。關鍵詞:開關電容、濾波器、設計 1 引言 開關電容濾波器在近些年得到了迅速的發展,世界上一些知名的半導體廠家相繼推出了自己的開頭電容濾波器集成電路,使形狀電容濾波器的發展上了一個新臺階。 MAXIM公司在模擬器件生產領域頗具影響,它生產MAX291/292/293/294/295/296/297系列8階低通開關電容濾波器由于使用方便(基本上不需外接元件)、設計簡單(頻率響應函數是固定的,只需確定其拐角頻率即截止頻率)、尺寸?。ㄓ?-pin DIP封裝)等優點,在ADC的反混疊濾波、噪聲分析、電源噪聲抑制等領域得到了廣泛的應用。 MAX219/295為巴特活思(型濾波器,在通頻帶內,它的增益最穩定,波動小,主要用于儀表測量等要求整個通頻帶內增益恒定的場合。MAX292/296為貝塞爾(Bessel)濾波器,在通頻帶內它的群時延時恒定的,相位對頻率呈線性關系,因此脈沖信號通過MAX292/296之后尖峰幅度小,穩定速度快。由于脈沖信號通過貝塞爾濾波器之后所有頻率分量的延遲時間是相同的,故可保證波形基本不變。關于巴特活和貝塞爾濾波器的特性可能圖1來說明。圖1的蹤跡A為加到濾波器輸入端的3kHz的脈沖,這里我們把濾波器的截止頻率設為10kHZ。蹤跡B通過MAX292/296后的波形。從圖中可以看出,由于MAX292/296在通帶內具有線性相位特性,輸出波形基本上保持了方波形狀,只是邊沿處變圓了一些。方波通過MAX291/295之后,由于不同頻率的信號產生的時延不同,輸出波形中就出現了尖峰(overshoot)和鈴流(ringing)。 MAX293/294/297為8階圓型(Elliptic)濾波器,它的滾降速度快,從通頻帶到阻帶的過渡帶可以作得很窄。在橢圓型濾波器中,第一個傳輸零點后輸出將隨頻率的變高而增大,直到第二個零點處。這樣幾番重復就使阻事賓頻響呈現波浪形,如圖2所示。阻帶從fS起算起,高于頻率fS處的增益不會超過fS處的增益。在橢圓型濾波中,通頻帶內的增益存在一定范圍的波動。橢圓型濾波器的一個重要參數就是過渡比。過渡比定義為阻帶頻率fS與拐角頻率(有時也等同為截止頻率)由時鐘頻率確定。時鐘既可以是外接的時鐘,也可以是自己的內部時鐘。使用內部時鐘時只需外接一個定時用的電容既可。 在MAX29X系列濾波器集成電路中,除了濾波器電路外還有一個獨立的運算放大器(其反相輸入端已在內部接地)。用這個運算放大器可以組成配合MAX29X系列濾波器使用后的濾波、反混濾波等連續時間低通濾波器。 下面歸納一下它們的特點: ●全部為8階低通濾波器。MAX291/MAX295為巴特沃思濾波器;MAX292/296為貝塞爾濾波器;MAX293/294/297為橢圓濾波器。 ●通過調整時鐘,截止頻率的調整范圍為:0.1Hz~25kHz(MAX291/292/293*294);0.1Hz~kHz(MAX295/296/297)。 ●既可用外部時鐘也可用內部時鐘作為截止頻率的控制時鐘。 ●時鐘頻率和截止頻率的比率:10∶1(MAX291/292/293/294);50∶1(MAX295/296/297)。 ●既可用單+5V電源供電也可用±5V雙電源供電。 ●有一個獨立的運算放大器可用于其它應用目的。 ●8-pin DIP、8-pin SO和寬SO-16多種封裝。2 管腳排列和主要電氣參數 MAX29X系列開頭電容濾波器的管腳排列如圖3所示。 管腳功能定義如下: CLK:時鐘輸入。 OP OUT:獨立運放的輸出端。 OP INT:獨立運放的同相輸入端。 OUT:濾波器輸出。 IN:濾波器輸入。 V-:負電源 。雙電源供電時搛-2.375~-5.5V之間的電壓,單電源供電時V--=-V。 V+:正電源。雙電源供電時V+=+2.35~+5.5V,單電源供電時V+=+4.75~+11.0V。 GND:地線。單電源工作時GND端必須用電源電壓的一半作偏置電壓。 NC:空腳,無連線。 MAX29X的極限電氣參數如下: 電源(V+~V-):12V 輸入電壓(任意腳):V--0.3V≤VIN≤V++0.3V 連續工作時的功耗:8腳塑封DIP:727mW;8腳SO:471mW;16腳寬SO:762mW;8腳瓷封DIP:640mW。 工作溫度范圍:MAX29-C-:0℃~+70℃;MAX29-E-:-40℃~+85℃;MAX29-MJA:-55℃~+125℃;保存溫度范圍:-65℃~+160℃;焊接溫度(10秒):+300℃; 大多數的形狀電容濾波器都采用四節級連結構,每一節包含兩個濾波器極點。這種方法的特點就是易于設計。但采用這種方法設計出來的濾波器的特性對所用元件的元件值偏差很敏感。基于以上考慮,MAX29X系列用帶有相加和比例功能的開關電容持了梯形無源濾波器,這種方法保持了梯形無源濾波器的優點,在這種結構中每個元件的影響作用是對于整個頻率響應曲線的,某元件值的誤差將會分散到所有的極點,因此不值像四節級連結構那樣對某一個極點特別明顯的影響。3 MAX29X的頻率特性 MAX29X的頻率特性如圖4所示。圖中的fs都假定為1kHz。4 設計考慮 下面對MAX29X系列形狀電容濾波器的使用做些討論。4.1 時鐘信號 MAX29X系列開頭電容濾波器推薦使用的時鐘信號最高頻率為2.5MHz。根據對應的時鐘頻率和拐角頻率的比值,MAX291/MAX292/MAX293/MAX294的拐角頻率最高為25kHz.MAX295/MAX296/MAX297的拐角頻率最高為50kHz 。 MAX29X系列開關電容濾波器的時鐘信號既可幅外部時鐘直接驅動也可由內部振蕩器產生。使用外部時鐘時,無論是采用單電源供電還是雙電源供電,CLK可直接和采用+5V供電的CMOS時鐘信號發生器的輸出相連。通過調整外部時鐘的頻率,可完成濾波器拐角的實時調整。 當使用內部時鐘時,振蕩器的頻率由接在CLK端上的電容VCOSC決定: fCOSC (kHz)=105/3COSC (pF) 4.2 供電 MAX29X系列開關電容濾波器既可用單電源工作也可用雙電源工作。雙電源供電時的電源電壓范圍為±2.375~±5.5V。在實際電路中一般要在正負電源和GND之間接一旁路電容。 當采用單電源供電時,V-端接地,而GND端要通過電阻分壓獲得一個電壓參考,該電壓參考的電壓值為1/2的電源電壓,參見圖5。4.3 輸入信號幅度范圍限制 MAX29X允許的輸入信號的最大范圍為V--0.3V~V++0.3V。一般情況下在+5V單電源供電時輸入信號范圍取1V~4V,±5V雙電源供電時,輸入信號幅度范圍取±4V。如果輸入信號超過此范圍,總諧波失真THD和噪聲就大大增加;同樣如果輸入信號幅度過?。╒P-P<1V),也會造成THD和噪聲的增加。4.4 獨立運算放大器的用法 MAX29X中都設計有一個獨立的運算放大器,這個放大器和濾波器的實現無直接關系,用這個放大器可組成一個一階和二階濾波器,用于實現MAX29X之前的反混疊濾波功能鄞MAX29X之后的時鐘噪聲抑制功能。這個運算放大器的反相端已在內部和GND相連。 圖6是用該獨立運放組成的2階低通濾波器的電路,它的拐角頻率為10kHz,輸入阻抗為22Ω,可滿足MAX29X形狀電容濾波器的最小負載要求(MAX29X的輸出負載要求不小于20kΩ)可以通過改變R1、R2、R3、C1、C2的元件值改變拐角頻率。具體的元件值和拐角頻率的對應關系參見表1。
上傳時間: 2013-10-18
上傳用戶:macarco
上一節,仔細的把怎么建立一個好的工程模板說了一下,可以說是一個好的
上傳時間: 2013-11-25
上傳用戶:shawvi
本書從應用的角度,詳細地介紹了MCS-51單片機的硬件結構、指令系統、各種硬件接口設計、各種常用的數據運算和處理程序及接口驅動程序的設計以及MCS-51單片機應用系統的設計,并對MCS-51單片機應用系統設計中的抗干擾技術以及各種新器件也作了詳細的介紹。本書突出了選取內容的實用性、典型性。書中的應用實例,大多來自科研工作及教學實踐,且經過檢驗,內容豐富、翔實。 本書可作為工科院校的本科生、研究生、??粕鷮W習MCS-51單片機課程的教材,也可供從事自動控制、智能儀器儀表、測試、機電一體化以及各類從事MCS-51單片機應用的工程技術人員參考。 第一章 單片微型計等機概述 1.1 單片機的歷史及發展概況 1.2 單片機的發展趨勢 1.3 單片機的應用 1.3.1 單片機的特點 1.3.2 單片機的應用范圍 1.4 8位單片機的主要生產廠家和機型 1.5 MCS-51系列單片機 第二章 MCS-51單片機的硬件結構 2.1 MCS-51單片機的硬件結構 2.2 MCS-51的引腳 2.2.1 電源及時鐘引腳 2.2.2 控制引腳 2.2.3 I/O口引腳 2.3 MCS-51單片機的中央處理器(CPU) 2.3.1 運算部件 2.3.2 控制部件 2.4 MCS-51存儲器的結構 2.4.1 程序存儲器 2.4.2 內部數據存儲器 2.4.3 特殊功能寄存器(SFR) 2.4.4 位地址空間 2.4.5 外部數據存儲器 2.5 I/O端口 2.5.1 I/O口的內部結構 2.5.2 I/O口的讀操作 2.5.3 I/O口的寫操作及負載能力 2.6 復位電路 2.6.1 復位時各寄存器的狀態 2.6.2 復位電路 2.7 時鐘電路 2.7.1 內部時鐘方式 2.7.2 外部時鐘方式 2.7.3 時鐘信號的輸出 第三章 MCS-51的指令系統 3.1 MCS-51指令系統的尋址方式 3.1.1 寄存器尋址 3.1.2 直接尋址 3.1.3 寄存器間接尋址 3.1.4 立即尋址 3.1.5 基址寄存器加變址寄存器間址尋址 3.2 MCS-51指令系統及一般說明 3.2.1 數據傳送類指令 3.2.2 算術操作類指令 3.2.3 邏輯運算指令 3.2.4 控制轉移類指令 3.2.5 位操作類指令 第四章 MCS-51的定時器/計數器 4.1 定時器/計數器的結構 4.1.1 工作方式控制寄存器TMOD 4.1.2 定時器/計數器控制寄存器TCON 4.2 定時器/計數器的四種工作方式 4.2.1 方式0 4.2.2 方式1 4.2.3 方式2 4.2.4 方式3 4.3 定時器/計數器對輸入信號的要求 4.4 定時器/計數器編程和應用 4.4.1 方式o應用(1ms定時) 4.4.2 方式1應用 4.4.3 方式2計數方式 4.4.4 方式3的應用 4.4.5 定時器溢出同步問題 4.4.6 運行中讀定時器/計數器 4.4.7 門控制位GATE的功能和使用方法(以T1為例) 第五章 MCS-51的串行口 5.1 串行口的結構 5.1.1 串行口控制寄存器SCON 5.1.2 特殊功能寄存器PCON 5.2 串行口的工作方式 5.2.1 方式0 5.2.2 方式1 5.2.3 方式2 5.2.4 方式3 5.3 多機通訊 5.4 波特率的制定方法 5.4.1 波特率的定義 5.4.2 定時器T1產生波特率的計算 5.5 串行口的編程和應用 5.5.1 串行口方式1應用編程(雙機通訊) 5.5.2 串行口方式2應用編程 5.5.3 串行口方式3應用編程(雙機通訊) 第六章 MCS-51的中斷系統 6.1 中斷請求源 6.2 中斷控制 6.2.1 中斷屏蔽 6.2.2 中斷優先級優 6.3 中斷的響應過程 6.4 外部中斷的響應時間 6.5 外部中斷的方式選擇 6.5.1 電平觸發方式 6.5.2 邊沿觸發方式 6.6 多外部中斷源系統設計 6.6.1 定時器作為外部中斷源的使用方法 6.6.2 中斷和查詢結合的方法 6.6.3 用優先權編碼器擴展外部中斷源 第七章 MCS-51單片機擴展存儲器的設計 7.1 概述 7.1.1 只讀存儲器 7.1.2 可讀寫存儲器 7.1.3 不揮發性讀寫存儲器 7.1.4 特殊存儲器 7.2 存儲器擴展的基本方法 7.2.1 MCS-51單片機對存儲器的控制 7.2.2 外擴存儲器時應注意的問題 7.3 程序存儲器EPROM的擴展 7.3.1 程序存儲器的操作時序 7.3.2 常用的EPROM芯片 7.3.3 外部地址鎖存器和地址譯碼器 7.3.4 典型EPROM擴展電路 7.4 靜態數據存儲的器擴展 7.4.1 外擴數據存儲器的操作時序 7.4.2 常用的SRAM芯片 7.4.3 64K字節以內SRAM的擴展 7.4.4 超過64K字節SRAM擴展 7.5 不揮發性讀寫存儲器擴展 7.5.1 EPROM擴展 7.5.2 SRAM掉電保護電路 7.6 特殊存儲器擴展 7.6.1 雙口RAMIDT7132的擴展 7.6.2 快擦寫存儲器的擴展 7.6.3 先進先出雙端口RAM的擴展 第八章 MCS-51擴展I/O接口的設計 8.1 擴展概述 8.2 MCS-51單片機與可編程并行I/O芯片8255A的接口 8.2.1 8255A芯片介紹 8.2.2 8031單片機同8255A的接口 8.2.3 接口應用舉例 8.3 MCS-51與可編程RAM/IO芯片8155H的接口 8.3.1 8155H芯片介紹 8.3.2 8031單片機與8155H的接口及應用 8.4 用MCS-51的串行口擴展并行口 8.4.1 擴展并行輸入口 8.4.2 擴展并行輸出口 8.5 用74LSTTL電路擴展并行I/O口 8.5.1 用74LS377擴展一個8位并行輸出口 8.5.2 用74LS373擴展一個8位并行輸入口 8.5.3 MCS-51單片機與總線驅動器的接口 8.6 MCS-51與8253的接口 8.6.1 邏輯結構與操作編址 8.6.2 8253工作方式和控制字定義 8.6.3 8253的工作方式與操作時序 8.6.4 8253的接口和編程實例 第九章 MCS-51與鍵盤、打印機的接口 9.1 LED顯示器接口原理 9.1.1 LED顯示器結構 9.1.2 顯示器工作原理 9.2 鍵盤接口原理 9.2.1 鍵盤工作原理 9.2.2 單片機對非編碼鍵盤的控制方式 9.3 鍵盤/顯示器接口實例 9.3.1 利用8155H芯片實現鍵盤/顯示器接口 9.3.2 利用8031的串行口實現鍵盤/顯示器接口 9.3.3 利用專用鍵盤/顯示器接口芯片8279實現鍵盤/顯示器接口 9.4 MCS-51與液晶顯示器(LCD)的接口 9.4.1 LCD的基本結構及工作原理 9.4.2 點陣式液晶顯示控制器HD61830介紹 9.5 MCS-51與微型打印機的接口 9.5.1 MCS-51與TPμp-40A/16A微型打印機的接口 9.5.2 MCS-51與GP16微型打印機的接口 9.5.3 MCS-51與PP40繪圖打印機的接口 9.6 MCS-51單片機與BCD碼撥盤的接口設計 9.6.1 BCD碼撥盤 9.6.2 BCD碼撥盤與單片機的接口 9.6.3 撥盤輸出程序 9.7 MCS-51單片機與CRT的接口 9.7.1 SCIBCRT接口板的主要特點及技術參數 9.7.2 SCIB接口板的工作原理 9.7.3 SCIB與MCS-51單片機的接口 9.7.4 SCIB的CRT顯示軟件設計方法 第十章 MCS-51與D/A、A/D的接口 10.1 有關DAC及ADC的性能指標和選擇要點 10.1.1 性能指標 10.1.2 選擇ABC和DAC的要點 10.2 MCS-51與DAC的接口 10.2.1 MCS-51與DAC0832的接口 10.2.2 MCS-51同DAC1020及DAC1220的接口 10.2.3 MCS-51同串行輸入的DAC芯片AD7543的接口 10.3 MCS-51與ADC的接口 10.3.1 MCS-51與5G14433(雙積分型)的接口 10.3.2 MCS-51與ICL7135(雙積分型)的接口 10.3.3 MCS-51與ICL7109(雙積分型)的接口 10.3.4 MCS-51與ADC0809(逐次逼近型)的接口 10.3.5 8031AD574(逐次逼近型)的接口 10.4 V/F轉換器接口技術 10.4.1 V/F轉換器實現A/D轉換的方法 10.4.2 常用V/F轉換器LMX31簡介 10.4.3 V/F轉換器與MCS-51單片機接口 10.4.4 LM331應用舉例 第十一章 標準串行接口及應用 11.1 概述 11.2 串行通訊的接口標準 11.2.1 RS-232C接口 11.2.2 RS-422A接口 11.2.3 RS-485接口 11.2.4 各種串行接口性能比較 11.3 雙機串行通訊技術 11.3.1 單片機雙機通訊技術 11.3.2 PC機與8031單片機雙機通訊技術 11.4 多機串行通訊技術 11.4.1 單片機多機通訊技術 11.4.2 IBM-PC機與單片機多機通訊技術 11.5 串行通訊中的波特率設置技術 11.5.1 IBM-PC/XT系統中波特率的產生 11.5.2 MCS-51單片機串行通訊波特率的確定 11.5.3 波特率相對誤差范圍的確定方法 11.5.4 SMOD位對波特率的影響 第十二章 MCS-51的功率接口 12.1 常用功率器件 12.1.1 晶閘管 12.1.2 固態繼電器 12.1.3 功率晶體管 12.1.4 功率場效應晶體管 12.2 開關型功率接口 12.2.1 光電耦合器驅動接口 12.2.2 繼電器型驅動接口 12.2.3 晶閘管及脈沖變壓器驅動接口 第十三章 MCS-51單片機與日歷的接口設計 13.1 概述 13.2 MCS-51單片機與實時日歷時鐘芯片MSM5832的接口設計 13.2.1 MSM5832性能及引腳說明 13.2.2 MSM5832時序分析 13.2.3 8031單片機與MSM5832的接口設計 13.3 MCS-51單片機與實時日歷時鐘芯片MC146818的接口設計 13.3.1 MC146818性能及引腳說明 13.3.2 MC146818芯片地址分配及各單元的編程 13.3.3 MC146818的中斷 13.3.4 8031單片機與MC146818的接口電路設計 13.3.5 8031單片機與MC146818的接口軟件設計 第十四章 MCS-51程序設計及實用子程序 14.1 查表程序設計 14.2 散轉程序設計 14.2.1 使用轉移指令表的散轉程序 14.2.2 使用地地址偏移量表的散轉程序 14.2.3 使用轉向地址表的散轉程序 14.2.4 利用RET指令實現的散轉程序 14.3 循環程序設計 14.3.1 單循環 14.3.2 多重循環 14.4 定點數運算程序設計 14.4.1 定點數的表示方法 14.4.2 定點數加減運算 14.4.3 定點數乘法運算 14.4.4 定點數除法 14.5 浮點數運算程序設計 14.5.1 浮點數的表示 14.5.2 浮點數的加減法運算 14.5.3 浮點數乘除法運算 14.5.4 定點數與浮點數的轉換 14.6 碼制轉換 ……
上傳時間: 2013-11-06
上傳用戶:xuanjie
XLISP 系列單片機綜合仿真試驗儀(以下簡稱 XLISP 系列)是深圳市學林電子有限公司綜合多年經驗開發出的多功能 8051 單片機平臺(兼容 AVR/PIC 單片機的部 份燒寫實驗功能)。本系列目前包含 XL600 單片機試驗儀和 XL1000 USB 型單片機實驗儀,集成常用的單片機 外圍硬件,ISP 下載線,單片機仿真器, 單片機試驗板,編程器功能于一身,特別適合新手學習使用! 第一章:XLISP 系列 單片機綜合仿真試驗儀系統簡介 1.1 系統簡介……………………………………………………………2 1. 2 各個模塊接口的定義……………………………………………3 第二章: 快速入門篇- 跟我來用 XLISP 系列作跑馬燈實驗 2.1 軟件安裝介紹………………………………………………………5 2.2 軟件操作……………………………………………………………6 第三章 USB 接口安裝指南(僅限 XL1000) 3.1 USB 驅動程序安裝…………………………………………………8 3.2 特別情況下的 usb安裝……………………………………………10 第四章 ISP 下載部份的應用 4.1 ISP 下載部份介紹…………………………………………11 4.2 XLISP 系列下載頭之插頭定義………………………………12 4.3 常用芯片的 ISP 相關引腳連接方法……………………………13 第五章 XLISP 系列 仿真操作指南 5.1 仿真概述…………………………………………………………14 5.2 KEIL UV2 軟件操作指南…………………………………………15 第六章:XLISP 系列單片機系統實驗 MCS-51 單片機引腳說明………………………………………………17 實驗 1 最簡單的八路跑馬燈………………………………………18 實驗 2 用 XLISP 系列試驗儀做一個 8 路彩燈控制器…………20 實驗 3 8 路指示燈讀出 8 路撥動開關的狀態……………………21 實驗 4 數碼管靜態掃描 …………………………………………22 實驗 5 數碼管動態掃描顯示 01234567……………………………23 實驗 6 端口按鍵判斷技術(按鍵顯示數字)………………………26 實驗 7 矩陣按鍵識別技術……………………………………………27 實驗 8 74LS14 反向器實驗………………………………………………29 實驗 9 74LS138 38 譯碼器部分實驗………………………………30 實驗 10 74LS164 串入并出實驗 ……………………………………31 實驗 11 74LS165 并入串出實驗 ………………………………………32 實驗 12 DA 轉換 dac0832 的原理與應用………………………………34 實驗 13 模擬/數字轉換器 ADC0804………………………………………36 實驗 14 小喇叭警報器試驗………………………………………………38 實驗 15 紅外線遙控試驗…………………………………………………39 實驗 16 漢字顯示屏顯示倚天一出寶刀屠龍(僅限 XL1000)…………42 實驗 17 1602 液晶顯示屏顯示 A……………………………………44 實驗 18 8155 試驗(僅限 XL1000)…………………………………46 實驗 19 24C02 儲存開機次數實驗 ……………………………………48 實驗 20 步進電機實驗…………………………………………………50 實驗 21 93c46 演示程序 …………………………………………………………51 實驗 22 串行雙向通信實驗 ……………………………………………53 實驗 23 綜合實驗 18B20 數字溫度顯示系統…………………………55 第七章 怎樣產生 hex 文件? Dais 集成開發環境使用………………58 第八章 常見問題解答 60 第九章 系統配置和售后服務指南…………………………………61 部分配套的例子程序說明………………………………………………62
上傳時間: 2013-11-13
上傳用戶:lanjisu111
用單片機制作的高精度數顯計數器 單片機C51計數器 要求:編寫一個計數器程序,將T0作為計數器來使用,對外部信號計數,將所計數字顯示在數碼管上。 該部分的硬件電路如圖所示,U1的P0口和P2口的部份引腳構成了6位LED數碼管驅動電路,數碼管采用共陽型,使用PNP型三極管作為片選端的驅動,所有三極管的發射極連在一起,接到正電源端,它們的基極則分別連到P2.0…P2.5,當P2.0…P2.5中某引腳輸是低電平時,三極管導通,給相應的數碼管供電,該位數碼管點亮哪些筆段,則取決于筆段引腳是高或低電平。圖中看出,所有6位數碼管的筆段連在一起,通過限流電阻后接到P0口,因此,哪些筆段亮就取決于P0口的8根線的狀態。 里面包含了:單片機C51計數器、計算器流程圖、工作原理,
上傳時間: 2013-11-16
上傳用戶:myworkpost
瑞薩電子基于RX62T單片機的PMSM電機位置控制英文資料:RX62T基于RX CPU架構,集成了增強的定時器單元(MTU3、GPT)、12位AD轉換器(1μs轉換時間),每個AD轉換單元還集成可調增益運放和窗口比較器,適用于各種電機控制和變頻器應用。最近瑞薩電子推出先進電機控制算法,其關鍵技術包括高級脈沖幅值調制技術、先進的電動機驅動技術等。基于RX62T高性能32位CISC MCU,使用瑞薩先進電機控制算法實現空調壓縮機控制時,可以實現如下系統規格:適用空調器制冷量范圍《8000W,低頻振動最高振幅《300μm,壓縮機轉速范圍為1~150rps,功率因數額定工況》0.9,滿載高達100%,調制度《200%,電流檢測方式為單電阻檢測。它不但可以提供業界最精簡的BOM,還可以在不增加BOM成本的情況下實現更多的功能。
上傳時間: 2013-10-20
上傳用戶:ve3344
電子發燒友網訊:應廣大電子發燒友網讀者要求,本電子書《C51單片機及C語言知識點必備秘籍》為《單片機關鍵知識點全攻略》單片機系列教程及《單片機C語言知識點全攻略》系列單片機C語言學習教程的全整合篇,供所需學習或收藏的工程師及單片機學生、單片機愛好者下載。 點擊下載《C51單片機及C語言知識點必備秘籍》電子書 單片機對于初學者來說確實很難理解,不少學過單片機的同學或電子愛好者,甚至在畢業時仍舊是一無所獲?;诖耍娮影l燒友網將整合《單片機關鍵知識點全攻略》,共分為四個系列,以饗讀者,敬請期待!此系列對于業內電子工程師也有收藏和參考價值。 單片機關鍵知識點一覽: 系列一 1:單片機簡敘 2:單片機引腳介紹 3:單片機存儲器結構 4:第一個單片機小程序 5:單片機延時程序分析 6:單片機并行口結構 7:單片機的特殊功能寄存器 系列二 8:單片機尋址方式與指令系統 9:單片機數據傳遞類指令 10:單片機數據傳送類指令 11:單片機算術運算指令 12:單片機邏輯運算類指令 13:單片機邏輯與或異或指令祥解 14:單片機條件轉移指令 系列三 15:單片機位操作指令 16:單片機定時器與計數器 17:單片機定時器/計數器的方式 18:單片機的中斷系統 19:單片機定時器、中斷試驗 20:單片機定時/計數器實驗 21:單片機串行口介紹 系列四 22:單片機串行口通信程序設計 23:LED數碼管靜態顯示接口與編 24:動態掃描顯示接口電路及程序 25:單片機鍵盤接口程序設計 26:單片機矩陣式鍵盤接口技術及 27:關于單片機的一些基本概念 28:實際案例實踐——單片機音樂程序設計 繼《單片機學習知識點全攻略》得到廣大讀者好評,根據有網友提出美中不足的是所用單片機編程語言為匯編,基于此,電子發燒友網再接再厲再次為讀者誠摯奉上非常詳盡的《單片機C語言知識點全攻略》系列單片機C語言學習教程,本教程共分為四部分,主要知識點如下所示。 第一部分知識點: 第一課 建立你的第一個KeilC51項目 第二課 C51HEX文件的生成和單片機 第三課 C51數據類型 第四課 C51常量 第二部分知識點: 第五課 C51變量 第六課 C51運算符和表達式 第七課 運算符和表達式(關系運算符) 第八課 運算符和表達式(位運算符) 第九課 C51運算符和表達式(指針和地址運算符) 第三部分知識點: 第十課 C51表達式語句及仿真器 第十一課 C51復合語句和條件語句 第十二課 C51開關分支語句 第十三課 C51循環語句 第十四課 C51函數 第四部分知識點: 第十五課 C51數組的使用 第十六課 C51指針的使用 第十七課 C51結構、聯合和枚舉的使用 附錄(運算符優先級和結合性等)
上傳時間: 2013-11-03
上傳用戶:Amygdala
SD 卡(Secure Digital Memory Card)是一種為滿足安全性、容量、性能和使用環境等各方面的需求而設計的一種新型存儲器件,SD 卡允許在兩種模式下工作,即SD 模式和SPI 模式,本系統采用SPI 模式。本小節僅簡要介紹在SPI 模式下,STM32 處理器如何讀寫SD 卡,如果讀者如希望詳細了解SD 卡,可以參考相關資料。
標簽: SD卡
上傳時間: 2013-11-12
上傳用戶:huannan88
Microchip 公司是 The Embedded Control Solutions Company® (嵌入式控制系統解決方案公 司) ,其產品主要滿足嵌入式控制市場的需求。我們是以下產品的領先供應商: • 8 位通用單片機(PICmicro® 單片機) • 專用和標準的非易失性存儲器件 • 安防器件 (KEELOQ®) • 專用標準產品 欲獲得您所感興趣的產品列表,請申請一份Microchip產品線目錄。該文獻可從各地的Microchip 銷售辦事處獲得,或者直接從Microchip的網站上下載。 以往,8位單片機的用戶只選擇傳統的MCU類型,即ROM器件,用于生產。Microchip率先改變 了這種傳統觀念,向人們展示了 OTP(一次性編程)器件比 ROM 器件在其壽命周期內具有更低 的產品成本。 Microchip具備EPROM技術優勢, 從而使EPROM成為PICmicro 單片機程序存儲器的不二選擇。 Microchip 盡可能地縮小了EPROM 和ROM 存儲器技術之間的成本差距,并使顧客從中受益。其 他MCU供應商無法作到這一點,這從他們的 EPROM 和 ROM 版本之間的價格差異便可以看出。 Microchip的8位單片機市場份額的增長證明了PICmicro® 單片機能夠滿足大多數人的需要。 這也 使 PICmicro 單片機架構成為了當今通用市場上應用最廣泛的三大體系之一。Microchip 的低成本 OTP解決方案所帶來的效益是這一增長的助推劑。用戶能夠從以下各方面受益: • 快速的產品上市時間 • 允許生產過程中對產品進行代碼修改 • 無需掩膜產品所需的一次性工程費用(NRE) • 能夠輕松為產品進行連續編號 • 無需額外增加硬件即可存儲校準數據 • 可最大限度地增加PICmicro® 單片機的庫存 • 由于在開發和生產中使用同一器件,從而降低了風險 Microchip 的 8 位 PICmicro單片機具備很好的性價比,可成為任何傳統的 8 位應用和某些 4 位應 用(低檔系列)、專用邏輯的替代品以及低端DSP應用(高檔系列)的選擇。這些特點及其良好的 性價比使PICmicro單片機在大多數應用場合極具吸引力。
上傳時間: 2013-10-30
上傳用戶:Zero_Zero