從大量的正側(cè)面臉部照片采集著手構(gòu)建了正、側(cè)面臉部信息的人臉庫(kù),依據(jù)人體測(cè)量學(xué)、人體解剖學(xué)等臉部關(guān)鍵特征的原則定義了臉部測(cè)量點(diǎn)及測(cè)量項(xiàng)目。基于建立的人臉數(shù)據(jù)庫(kù)中測(cè)量點(diǎn)定義模型的正側(cè)面特征點(diǎn),采用徑向基函數(shù)插值的方法對(duì)模型進(jìn)行調(diào)整,生成特定人臉模型。
上傳時(shí)間: 2013-12-20
上傳用戶(hù):chenbhdt
matlab經(jīng)典算法的程序 多個(gè)matlab經(jīng)典算法程序,包括插值與擬合、規(guī)劃問(wèn)題、解方程、繪圖、數(shù)據(jù)分析等等
上傳時(shí)間: 2017-09-08
上傳用戶(hù):cjf0304
本程序代碼主要包括圖像的平移,鏡像變換,轉(zhuǎn)置,縮放,旋轉(zhuǎn),插值算法簡(jiǎn)介。
上傳時(shí)間: 2017-09-14
上傳用戶(hù):wangdean1101
摘 要:曝光瞬間造成圖像模糊的運(yùn)動(dòng)通常作為直線(xiàn)運(yùn)動(dòng)近似處理 ,若能找出模糊圖像的運(yùn)動(dòng)模糊方向 ,并將之旋轉(zhuǎn)到水平軸 ,則二維問(wèn)題可簡(jiǎn)化為一維來(lái)處理 ,大大簡(jiǎn)化由模糊圖像估計(jì)出運(yùn)動(dòng)模糊點(diǎn)擴(kuò)散函數(shù)以及圖像恢復(fù)的過(guò)程 ,并為圖像恢復(fù)的并行計(jì)算創(chuàng)造有利條件。由于運(yùn)動(dòng)模糊降低了運(yùn)動(dòng)方向上圖像的高頻成 分 ,沿著運(yùn)動(dòng)方向?qū)嵤└咄V波 方向微分 ,可保證微分圖像灰度值 絕對(duì)值 之和最小。基于此 ,本文利用雙線(xiàn)性插值的方法 ,固定并適當(dāng)選取方向微分的微元大小 ,構(gòu)造出3 ×3方向微分乘子 ,得到了高效高精度的自動(dòng)鑒別運(yùn)動(dòng)模糊方向的新方法 ,并通過(guò)數(shù)值實(shí)驗(yàn)進(jìn)行了驗(yàn)證。
上傳時(shí)間: 2013-12-08
上傳用戶(hù):lmeeworm
該程序包括了計(jì)算方法基本需要的程序,諸如高斯列主元,擬合,牛頓插值,對(duì)分,雅克比等.
上傳時(shí)間: 2014-01-13
上傳用戶(hù):lhw888
用C++軟件 運(yùn)用三次樣條插條函數(shù)對(duì)一條已知的折線(xiàn)進(jìn)行圓滑
標(biāo)簽: C++
上傳時(shí)間: 2015-07-04
上傳用戶(hù):a227767611
本次宣傳辦寶興茶藨子保形插值幸福哈哈復(fù)仇
標(biāo)簽: 斷續(xù)必須
上傳時(shí)間: 2015-11-29
上傳用戶(hù):1605702468
理想的放大器 目前,廠商在線(xiàn)性IC研發(fā)上都有重大的突破。使IC型運(yùn)算放大器的特性和理想相當(dāng)接近。尤其在低頻操作下,OP Amp電路的工作情形實(shí)在太像一個(gè)理想放大器,幾乎與理論的推測(cè)完全相符。→理想的放大器該具備什麼特性?
標(biāo)簽: 算放大器原理
上傳時(shí)間: 2016-07-16
上傳用戶(hù):WALTER
迴歸分析的基本假設(shè) (一)固定自變項(xiàng)假設(shè)(fixed variable) (二)線(xiàn)性關(guān)係假設(shè)(linear relationship) (三)常態(tài)性假設(shè)(normality)
標(biāo)簽: 回歸分析 主成分分析
上傳時(shí)間: 2016-10-11
上傳用戶(hù):Gower's
The 4.0 kbit/s speech codec described in this paper is based on a Frequency Domain Interpolative (FDI) coding technique, which belongs to the class of prototype waveform Interpolation (PWI) coding techniques. The codec also has an integrated voice activity detector (VAD) and a noise reduction capability. The input signal is subjected to LPC analysis and the prediction residual is separated into a slowly evolving waveform (SEW) and a rapidly evolving waveform (REW) components. The SEW magnitude component is quantized using a hierarchical predictive vector quantization approach. The REW magnitude is quantized using a gain and a sub-band based shape. SEW and REW phases are derived at the decoder using a phase model, based on a transmitted measure of voice periodicity. The spectral (LSP) parameters are quantized using a combination of scalar and vector quantizers. The 4.0 kbits/s coder has an algorithmic delay of 60 ms and an estimated floating point complexity of 21.5 MIPS. The performance of this coder has been evaluated using in-house MOS tests under various conditions such as background noise. channel errors, self-tandem. and DTX mode of operation, and has been shown to be statistically equivalent to ITU-T (3.729 8 kbps codec across all conditions tested.
標(biāo)簽: frequency-domain interpolation performance Design kbit_s speech coder based and of
上傳時(shí)間: 2018-04-08
上傳用戶(hù):kilohorse
蟲(chóng)蟲(chóng)下載站版權(quán)所有 京ICP備2021023401號(hào)-1