電動(dòng)汽車逆變器用于控制汽車主電機(jī)為汽車運(yùn)行提供動(dòng)力,IGBT功率模塊是電動(dòng)汽車逆變器的核心功率器件,其驅(qū)動(dòng)電路是發(fā)揮IGBT性能的關(guān)鍵電路。驅(qū)動(dòng)電路的設(shè)計(jì)與工業(yè)通用變頻器、風(fēng)能太陽(yáng)能逆變器的驅(qū)動(dòng)電路有更為苛刻的技術(shù)要求。其中的電源電路受到空間尺寸小、工作溫度高等限制,面臨諸多挑戰(zhàn)。介紹了一種驅(qū)動(dòng)供電電源的設(shè)計(jì),并通過實(shí)際測(cè)試證明其可用性。
標(biāo)簽: 電動(dòng)汽車 逆變器 igbt 驅(qū)動(dòng) 電源
上傳時(shí)間: 2021-10-27
上傳用戶:
對(duì)供電系統(tǒng)進(jìn)行適當(dāng)?shù)臒o功補(bǔ)償,可以穩(wěn)定電網(wǎng)電壓,提高功率因數(shù),提高設(shè)備利用率,減小網(wǎng)絡(luò)有功功率損耗,提高輸電能力,平衡三相功率,為系統(tǒng)提供電壓支撐,提高系統(tǒng)運(yùn)行安全性。鋼鐵企業(yè)一直就是用電大戶,具有容量大、負(fù)荷沖擊大、起制動(dòng)頻繁、快速性、工作連續(xù)性和自動(dòng)化程度高等特點(diǎn),存在功率因數(shù)低、電壓波動(dòng)等問題。研究鋼鐵企業(yè)的無功補(bǔ)償,對(duì)企業(yè)提高供電可靠性,節(jié)能減排,降低損耗,提高用電設(shè)備效率,保證產(chǎn)品質(zhì)量有著非常重要的意義。 本文選用目前工程上應(yīng)用最為廣泛的動(dòng)態(tài)補(bǔ)償裝置靜止無功功率補(bǔ)償器,即SVC對(duì)鋼鐵企業(yè)負(fù)荷進(jìn)行無功補(bǔ)償。考察了軋鋼企業(yè)的負(fù)荷特點(diǎn),對(duì)比了各種補(bǔ)償裝置的優(yōu)缺點(diǎn),在此基礎(chǔ)上提出了FC—TCR型SVC做為鋼鐵企業(yè)的無功補(bǔ)償裝置。 本文根據(jù)特定的現(xiàn)場(chǎng)參數(shù),提出了FC—TCR型SVC裝置的設(shè)計(jì)框架,建立了潮流計(jì)算和SVC裝置的數(shù)學(xué)模型,給出了含有SVC補(bǔ)償裝置的電力系統(tǒng)潮流計(jì)算的計(jì)算方法,計(jì)算了SVC裝置的FC和TCR各支路參數(shù),對(duì)一次設(shè)備進(jìn)行選型,最后提出了一套完整的SVC系統(tǒng)設(shè)計(jì)方案。仿真結(jié)果表明,采用本方案的SVC系統(tǒng)有效提高了供電系統(tǒng)的功率因數(shù),抑制了電壓波動(dòng),表明方案設(shè)計(jì)中的支路配置,參數(shù)設(shè)置和設(shè)備選型是合理的。 從基于瞬時(shí)無功功率理論的補(bǔ)償裝置觸發(fā)角度的算法出發(fā),研究了SVC裝置動(dòng)態(tài)補(bǔ)償?shù)膶?shí)現(xiàn)方法。本文還提出了動(dòng)態(tài)補(bǔ)償SVC監(jiān)控系統(tǒng)和晶閘管觸發(fā)系統(tǒng)的硬件實(shí)現(xiàn)。 為了驗(yàn)證SVC系統(tǒng)設(shè)計(jì)的合理性,搭建了SVC的模擬試驗(yàn)平臺(tái),對(duì)一次系統(tǒng),監(jiān)控系統(tǒng),光電觸發(fā)系統(tǒng)進(jìn)行了聯(lián)合調(diào)試,調(diào)試結(jié)果達(dá)到了設(shè)計(jì)預(yù)期目標(biāo)。
標(biāo)簽: SVC 無功補(bǔ)償 參數(shù)
上傳時(shí)間: 2013-06-23
上傳用戶:xiaohuanhuan
多電平逆變器中每個(gè)功率器件承受的電壓相對(duì)較低,因此可以用低耐壓功率器件實(shí)現(xiàn)高壓大容量逆變器,且采用多電平變換技術(shù)可以顯著提高逆變器輸出電壓的質(zhì)量指標(biāo)。因此,隨著功率器件的不斷發(fā)展,采用多電平變換技術(shù)將成為實(shí)現(xiàn)高壓大容量逆變器的重要途徑和方法。本文選取其中一種極具優(yōu)勢(shì)的多電平拓?fù)浣Y(jié)構(gòu)一級(jí)聯(lián)多電平變頻器作為研究對(duì)象,完成了其拓?fù)浣Y(jié)構(gòu)、控制策略及測(cè)控系統(tǒng)的設(shè)計(jì)。 @@ 首先,對(duì)多電平變頻器的研究意義,國(guó)內(nèi)外現(xiàn)狀進(jìn)行了分析,比較了三種成熟拓?fù)浣Y(jié)構(gòu)的特點(diǎn),得出了級(jí)聯(lián)型多電平變頻器的優(yōu)點(diǎn),從而將其作為研究對(duì)象。對(duì)比分析了四種調(diào)制策略,確定載波移相二重化的調(diào)制方法和恒壓頻比的控制策略,進(jìn)行數(shù)學(xué)分析和理論仿真,得出了選擇的正確性及可行性。并指出了級(jí)聯(lián)單元個(gè)數(shù)與載波移相角的關(guān)系和調(diào)制比對(duì)輸出電壓的影響;完成了級(jí)聯(lián)變頻器數(shù)學(xué)模型的建立和死區(qū)效應(yīng)的分析。 @@ 其次,完成了相關(guān)硬件的設(shè)計(jì),包括DSP、CPLD、IPM的選型,系統(tǒng)電源的設(shè)計(jì)、檢測(cè)(轉(zhuǎn)速、電流、電壓、故障)電路的設(shè)計(jì)、通信電路的設(shè)計(jì)等。用Labwindows/CVI實(shí)現(xiàn)了上位機(jī)界面的編寫,實(shí)現(xiàn)了開關(guān)機(jī)、設(shè)定轉(zhuǎn)速、通信配置、電壓電流轉(zhuǎn)速檢測(cè)、電流軟件濾波、諧波分析。編寫了下位機(jī)DSP的串口通信、AD轉(zhuǎn)換、轉(zhuǎn)速檢測(cè)(QEP)以及部分控制程序。 @@ 最后,在實(shí)驗(yàn)臺(tái)上完成硬件和軟件的調(diào)試,成功的實(shí)現(xiàn)了變頻器載波移相SPWM的多電平輸出,并驅(qū)動(dòng)異步電機(jī)進(jìn)行了空載變頻試驗(yàn),測(cè)控界面能準(zhǔn)確的與下位機(jī)進(jìn)行通信,快捷的給定各種控制命令,并能實(shí)時(shí)的顯示變頻器的輸出頻率、輸出電壓和輸出電流,為實(shí)驗(yàn)調(diào)試增加了方便性,提高了工作效率。 @@關(guān)鍵詞:級(jí)聯(lián)多電平逆變器;載波移相;IPM;DSP;Labwindows/CVI;測(cè)控界面
標(biāo)簽: 級(jí)聯(lián) 電平變頻器 測(cè)控系統(tǒng)
上傳時(shí)間: 2013-04-24
上傳用戶:米卡
為了解決現(xiàn)有環(huán)形線圈車檢器在工程應(yīng)用中出現(xiàn)的誤檢問題,尤其是對(duì)同一輛大車的多次誤觸發(fā)問題,本文深入研究導(dǎo)致誤檢現(xiàn)象的具體原因,并在這基礎(chǔ)上提出了一套軟硬件的解決方法,以減少誤觸發(fā)現(xiàn)象,提高檢測(cè)的準(zhǔn)確率。 為了方便測(cè)量與調(diào)試,本文設(shè)計(jì)了一個(gè)PC端軟件。它與實(shí)驗(yàn)室原有的頻率采集工具一塊配合工作,能實(shí)時(shí)而直觀地察看車檢器的工作狀況,從而有利于實(shí)驗(yàn)數(shù)據(jù)的采集與問題分析。通過實(shí)驗(yàn)分析,本文總結(jié)了誤檢現(xiàn)象的若干情形,以及導(dǎo)致誤檢問題的主要原因。 針對(duì)上述分析的發(fā)現(xiàn)—車檢器采用的單一閾值法不能適應(yīng)復(fù)雜的應(yīng)用環(huán)境,本文對(duì)檢測(cè)算法作了改進(jìn):對(duì)車輛到達(dá)的檢測(cè),仍采用單一閾值法;對(duì)車輛離開的檢測(cè),則采用平坦性判定法。后者利用了在車輛離開時(shí),線圈頻率從非平坦變?yōu)槠教惯@一特征。它有簡(jiǎn)單、易移植和防誤檢的特點(diǎn)。 為了從應(yīng)用層面解決問題,本文設(shè)計(jì)了一種基于改進(jìn)算法的車檢器。與同類車檢器相比,它除了集成上述車檢算法外,還提供一個(gè)RS-232的測(cè)試端口,按一定的數(shù)據(jù)協(xié)議與PC端的診斷軟件通訊,能夠幫助現(xiàn)場(chǎng)測(cè)試工作的開展。 本文還利用了新車檢器做了兩組的實(shí)驗(yàn):實(shí)驗(yàn)室環(huán)境與高速公路車輛檢測(cè)現(xiàn)場(chǎng)環(huán)境下的實(shí)驗(yàn)。第一組驗(yàn)證了改進(jìn)算法的防誤檢性能,并計(jì)算它的檢測(cè)延遲。其中檢測(cè)延遲的計(jì)算,有助于協(xié)調(diào)車輛檢測(cè)系統(tǒng)中線圈、車檢器與攝像頭三者間的工作。第二組驗(yàn)證了新車檢器的檢測(cè)性能,包括識(shí)別和延遲兩方面內(nèi)容。兩組實(shí)驗(yàn)結(jié)果都證實(shí)了改進(jìn)算法的實(shí)用價(jià)值。
標(biāo)簽: 環(huán)形 技術(shù)研究 線圈
上傳時(shí)間: 2013-06-16
上傳用戶:1406054127
超聲波電源廣泛應(yīng)用于超聲波加工、診斷、清洗等領(lǐng)域,其負(fù)載超聲波換能器是一種將超音頻的電能轉(zhuǎn)變?yōu)闄C(jī)械振動(dòng)的器件。由于超聲換能器是一種容性負(fù)載,因此換能器與發(fā)生器之間需要進(jìn)行阻抗匹配才能工作在最佳狀態(tài)。串聯(lián)匹配能夠有效濾除開關(guān)型電源輸出方波存在的高次諧波成分,因此應(yīng)用較為廣泛。但是環(huán)境溫度或元件老化等原因會(huì)導(dǎo)致?lián)Q能器的諧振頻率發(fā)生漂移,使諧振系統(tǒng)失諧。傳統(tǒng)的解決辦法就是頻率跟蹤,但是頻率跟蹤只能保證系統(tǒng)整體電壓電流同頻同相,由于工作頻率改變了而匹配電感不變,此時(shí)換能器內(nèi)部動(dòng)態(tài)支路工作在非諧振狀態(tài),導(dǎo)致?lián)Q能器功率損耗和發(fā)熱,致使輸出能量大幅度下降甚至停振,在實(shí)際應(yīng)用中受到限制。所以,在跟蹤諧振點(diǎn)調(diào)節(jié)逆變器開關(guān)頻率的同時(shí)應(yīng)改變匹配電感才能使諧振系統(tǒng)工作在最高效能狀態(tài)。針對(duì)按固定諧振點(diǎn)匹配超聲波換能器電感參數(shù)存在的缺點(diǎn),本文應(yīng)用耦合振蕩法對(duì)換能器的匹配電感和耦合頻率之間的關(guān)系建立數(shù)學(xué)模型,證實(shí)了匹配電感隨諧振頻率變化的規(guī)律。給出利用這一模型與耦合工作頻率之間的關(guān)系動(dòng)態(tài)選擇換能器匹配電感的方法。經(jīng)過分析比較,選擇了基于磁通控制原理的可控電抗器作為匹配電感,通過改變電抗控制度調(diào)節(jié)電抗值。并給出了實(shí)現(xiàn)這一方案的電路原理和控制方法。最后本文以DSP TMS320F2812為核心設(shè)計(jì)出實(shí)現(xiàn)這一原理的超聲波逆變電源。實(shí)驗(yàn)結(jié)果表明基于磁通控制的可控電抗器可以實(shí)現(xiàn)電抗值隨電抗控制度線性無級(jí)可調(diào),由于該電抗器輸出正弦波,理論上沒有諧波污染。具體采用復(fù)合控制策略,穩(wěn)態(tài)時(shí),換能器工作在DPLL鎖定頻率上;動(dòng)態(tài)時(shí),逐步修改匹配電抗大小,搜索輸出電流的最大值,再結(jié)合DPLL鎖定該頻率。配合PS-PWM可實(shí)現(xiàn)功率連續(xù)可調(diào)。該超聲波換能系統(tǒng)能夠有效的跟隨最大電流輸出頻率,即使頻率發(fā)生漂移系統(tǒng)仍能保持工作在最佳狀態(tài),具有實(shí)際應(yīng)用價(jià)值。
標(biāo)簽: 動(dòng)態(tài) 換能器 超聲波電源
上傳時(shí)間: 2013-04-24
上傳用戶:lacsx
隨著信息技術(shù)的發(fā)展,通信和計(jì)算機(jī)等領(lǐng)域的DC/DC電源變換技術(shù)在電源行業(yè)占有很重要的市場(chǎng)。為了能滿足電源系統(tǒng)良好的性能和可靠性,分布電源系統(tǒng)(DPS)被廣泛應(yīng)用于電信、計(jì)算機(jī)等領(lǐng)域。DPS具有模塊化,可靠性和維護(hù)性等優(yōu)點(diǎn)。 本文討論了軟開關(guān)技術(shù)的種類和發(fā)展趨勢(shì),介紹了三種傳統(tǒng)的軟開關(guān)諧振變換器,通過理論分析和仿真,總結(jié)了三種傳統(tǒng)諧振變換器的優(yōu)缺點(diǎn)。在此基礎(chǔ)上,設(shè)計(jì)了一種新型的LLC串聯(lián)諧振變換器。此變換器可實(shí)現(xiàn)原邊開關(guān)管在零電壓條件下開通、輸出端的整流管零電流條件下關(guān)斷,因而可實(shí)現(xiàn)極高的轉(zhuǎn)換效率。由于電路充分地利用了變壓器的勵(lì)磁電感和開關(guān)管的寄生參數(shù),可使變換器在寬輸入電壓范圍和全負(fù)載下實(shí)現(xiàn)軟開關(guān)。此外,利用變壓器漏感和功率MOS管的寄生電容進(jìn)行諧振,可有效地降低輸出整流管的電壓應(yīng)力,提高抗EMI的性能。因此,在相同的設(shè)計(jì)規(guī)格下,LLC諧振變換器可以選取電壓和電流等較低的功率開關(guān)管和整流二極管,進(jìn)而減小開發(fā)成本。 結(jié)合PSPICE仿真和實(shí)驗(yàn)調(diào)試,論文詳細(xì)介紹了LLC串聯(lián)諧振變換器工作原理,詳細(xì)討論了諧振參數(shù)、輸入電壓和負(fù)載對(duì)變換器性能的影響;根據(jù)參數(shù)設(shè)計(jì)步驟和特性分析,設(shè)計(jì)了LLC串聯(lián)諧振變換器各組成電路;最后設(shè)計(jì)了24V/8A-200KHz的DC/DC電源模塊,通過實(shí)驗(yàn),其結(jié)果驗(yàn)證了該拓?fù)湓谌?fù)載下均能實(shí)現(xiàn)軟開關(guān),效率高等良好特性。
上傳時(shí)間: 2013-05-20
上傳用戶:dialouch
本論文針對(duì)6kV/400kW三相異步電動(dòng)機(jī)的中壓變頻器試驗(yàn)裝置,從分析目前中壓變頻器常用的主回路拓?fù)淙胧郑敿?xì)闡述并分析了本文研究的單元串聯(lián)型中壓變頻器控制系統(tǒng)。 本文首先從理論上分析了多單元串聯(lián)型中壓變頻器脈寬控制原理。然后,把一種高性能的V/f控制方案引入中壓變頻器控制系統(tǒng)。通過矢量補(bǔ)償定子壓降,進(jìn)行轉(zhuǎn)差補(bǔ)償和對(duì)電機(jī)電流進(jìn)行限制控制,實(shí)現(xiàn)了具有很好的低頻性能并具有防“跳閘”等功能的V/f控制方案。 同時(shí),本文將Siemens公司通用變頻器的時(shí)隙、連接紙的概念運(yùn)用到中壓變頻器控制領(lǐng)域。增加了系統(tǒng)的可變性,自由性和方便性。設(shè)計(jì)了具有系統(tǒng)組態(tài)功能的模塊化軟件,其中著重對(duì)控制軟件中的幾個(gè)重要功能進(jìn)行了分析討論。這些重要功能模塊有:控制字和狀態(tài)字、順序控制、V/f曲線、給定積分器、基于電壓補(bǔ)償?shù)妮敵鲎詣?dòng)穩(wěn)壓算法、通訊功能等。 中壓變頻器在實(shí)驗(yàn)室設(shè)計(jì)為6kV/22kW試驗(yàn)系統(tǒng),實(shí)際設(shè)計(jì)為6kV/400kW的變頻系統(tǒng)裝置。本文給出了實(shí)驗(yàn)室調(diào)試結(jié)果及分析。實(shí)驗(yàn)結(jié)果表明,該中壓變頻器能夠安全、穩(wěn)定地運(yùn)行。
上傳時(shí)間: 2013-04-24
上傳用戶:mingaili888
本文以電機(jī)控制DSPTMS320LF2407為核心,結(jié)合相關(guān)外圍電路,運(yùn)用新型SVPWM控制方法,設(shè)計(jì)電梯專用變頻器。為了達(dá)到電梯專用變頻器大轉(zhuǎn)矩、高性能的要求,在硬件上提高系統(tǒng)的實(shí)時(shí)性、抗干擾性和高精度性;在軟件上采用新型SVPWM控制方法,以消除死區(qū)的負(fù)面影響,另外單神經(jīng)元PID控制器應(yīng)用于速度環(huán),對(duì)速度的調(diào)節(jié)作用有明顯改善。通過軟硬件結(jié)合的方式,改善電機(jī)輸出轉(zhuǎn)矩,使電梯控制系統(tǒng)的性能得到提高。 系統(tǒng)主電路主要由三部分組成:整流部分、中間濾波部分和逆變部分,分別用6RI75G-160整流橋模塊、電解電容電路和7MBP50RA120IPM模塊實(shí)現(xiàn)。并設(shè)計(jì)有起動(dòng)時(shí)防止沖擊電流的保護(hù)電路,以及防止過壓、欠壓的保護(hù)電路。其中,對(duì)逆變模塊IPM的驅(qū)動(dòng)控制是控制電路的核心,也是系統(tǒng)實(shí)現(xiàn)的主要部分。控制電路以DSP為核心,由IPM驅(qū)動(dòng)隔離控制電路、轉(zhuǎn)速位置檢測(cè)電路、電流檢測(cè)電路、電源電路、顯示電路和鍵盤電路組成。對(duì)IPM驅(qū)動(dòng)、隔離、控制的效果,直接影響系統(tǒng)的性能,反映了變頻器的性能,所以這部分是改善變頻器性能的關(guān)鍵部分。另外,本課題擬定的被控對(duì)象是永磁同步電動(dòng)機(jī)(PMSM),要對(duì)系統(tǒng)實(shí)現(xiàn)SVPWM控制,依賴于轉(zhuǎn)子位置的準(zhǔn)確、實(shí)時(shí)檢測(cè),只有這樣,才能實(shí)現(xiàn)正確的矢量變換,準(zhǔn)確的輸出PWM脈沖,使合成矢量的方向與磁場(chǎng)方向保持實(shí)時(shí)的垂直,達(dá)到良好的控制性能,因此,轉(zhuǎn)子位置檢測(cè)是提高變頻器性能的一個(gè)重要環(huán)節(jié)。 系統(tǒng)采用的控制方式是SVPWM控制。本文從SVPWM原理入手,分析了死區(qū)時(shí)間對(duì)SVPWM控制的負(fù)面作用,采用了一種新型SVPWM控制方法,它將SVPWM的180度導(dǎo)通型和120度導(dǎo)通型結(jié)合起來,從而達(dá)到既可以消除死區(qū)影響,又可以提高電源利用率的目的。另外,在速度調(diào)節(jié)環(huán)節(jié),采用單神經(jīng)元PID控制器,通過反復(fù)的仿真證明,在調(diào)速比不是很大的情況下,其對(duì)速度環(huán)的調(diào)節(jié)作用明顯優(yōu)于傳統(tǒng)PID控制器。 通過實(shí)驗(yàn)證明,系統(tǒng)基本上達(dá)到高性能的控制要求,適合于電梯控制系統(tǒng)。
上傳時(shí)間: 2013-05-21
上傳用戶:trepb001
通用異步收發(fā)器(Universal Asynchronous Receiver Transmitter,UART)是一種能同時(shí)支持短距離和長(zhǎng)距離數(shù)據(jù)傳輸?shù)拇型ㄐ沤涌冢粡V泛應(yīng)用于微機(jī)和外設(shè)之間的數(shù)據(jù)交換。像8251、NS8250、NS16550等都是常用的UART芯片,但是這些專用的串行接口芯片的缺點(diǎn)是數(shù)據(jù)傳輸速率比較慢,難以滿足高速率數(shù)據(jù)傳輸?shù)膱?chǎng)合,而更重要的就是它們都具有不可移植性,因此要利用這些芯片來實(shí)現(xiàn)PC機(jī)和FPGA芯片之間的通信,勢(shì)必會(huì)增加接口連線的復(fù)雜程度以及降低整個(gè)系統(tǒng)的穩(wěn)定性和有效性。 本課題就是針對(duì)UART的特點(diǎn)以及FPGA設(shè)計(jì)具有可移植性的優(yōu)勢(shì),提出了一種基于FPGA芯片的嵌入式UART設(shè)計(jì)方法,其中主要包括狀態(tài)機(jī)的描述形式以及自頂向下的設(shè)計(jì)方法,利用硬件描述語言來編制UART的各個(gè)子功能模塊以及頂層模塊,之后將其集成到FPGA芯片的內(nèi)部,這樣不僅能解決傳統(tǒng)UART芯片的缺點(diǎn)而且同時(shí)也使整個(gè)系統(tǒng)變得更加具有緊湊性以及可靠性。 本課題所設(shè)計(jì)的LIART支持標(biāo)準(zhǔn)的RS-232C傳輸協(xié)議,主要設(shè)計(jì)有發(fā)送模塊、接收模塊、線路控制與中斷仲裁模塊、Modem控制模塊以及兩個(gè)獨(dú)立的數(shù)據(jù)緩沖區(qū)FIFO模塊。該模塊具有可變的波特率、數(shù)據(jù)幀長(zhǎng)度以及奇偶校驗(yàn)方式,還有多種中斷源、中斷優(yōu)先級(jí)、較強(qiáng)的抗干擾數(shù)據(jù)接收能力以及芯片內(nèi)部自診斷的能力,模塊內(nèi)分開的接收和發(fā)送數(shù)據(jù)緩沖寄存器能實(shí)現(xiàn)全雙工通信。除此之外最重要的是利用IP模塊復(fù)用技術(shù)設(shè)計(jì)數(shù)據(jù)緩沖區(qū)FIFO,采用兩種可選擇的數(shù)據(jù)緩沖模式。這樣既可以應(yīng)用于高速的數(shù)據(jù)傳輸環(huán)境,也能適合低速的數(shù)據(jù)傳輸場(chǎng)合,因此可以達(dá)到資源利用的最大化。 在具體的設(shè)計(jì)過程中,利用Synplify Pro綜合工具、ModelSim仿真工具、ISE集成的軟件開發(fā)環(huán)境中對(duì)各個(gè)功能模塊進(jìn)行綜合優(yōu)化、仿真驗(yàn)證以及下載實(shí)現(xiàn)。各項(xiàng)數(shù)據(jù)結(jié)果表明,本課題中所設(shè)計(jì)的UART滿足預(yù)期設(shè)計(jì)目標(biāo)。
上傳時(shí)間: 2013-08-02
上傳用戶:rocketrevenge
隨著信息時(shí)代的到來,用戶對(duì)數(shù)據(jù)保護(hù)和傳輸可靠性的要求也在不斷提高。由于信道衰落,信號(hào)經(jīng)信道傳輸后,到達(dá)接收端不可避免地會(huì)受到干擾而出現(xiàn)信號(hào)失真。因此需要采用差錯(cuò)控制技術(shù)來檢測(cè)和糾正由信道失真引起的信息傳輸錯(cuò)誤。RS(Reed—Solomon)碼是差錯(cuò)控制領(lǐng)域中一類重要的線性分組碼,由于它編解碼結(jié)構(gòu)相對(duì)固定,性能強(qiáng),不但可以糾正隨機(jī)差錯(cuò),而且對(duì)突發(fā)錯(cuò)誤的糾錯(cuò)能力也很強(qiáng),被廣泛應(yīng)用在數(shù)字通信、數(shù)據(jù)存儲(chǔ)系統(tǒng)中,以滿足對(duì)數(shù)據(jù)傳輸通道可靠性的要求。因此設(shè)計(jì)一款高性能的RS編解碼器不但具有很大的應(yīng)用意義,而且具有相當(dāng)大的經(jīng)濟(jì)價(jià)值。 本文首先介紹了線形分組碼及其子碼循環(huán)碼、BCH碼的基礎(chǔ)理論知識(shí),重點(diǎn)介紹了BCH碼的重要分支RS碼的常用編解碼算法。由于其算法在有限域上進(jìn)行,接著介紹了有限域的有關(guān)理論。基于RS碼傳統(tǒng)的單倍結(jié)構(gòu),本文提出了一種八倍并行編碼及九倍并行解碼方案,并用Verilog HDL語言實(shí)現(xiàn)。其中編碼器基于傳統(tǒng)的線性反饋移位寄存器除法電路并進(jìn)行八倍并行擴(kuò)展,譯碼器關(guān)鍵方程求解模塊基于修正的歐幾里德算法設(shè)計(jì)了一種便于硬件實(shí)現(xiàn)的脈動(dòng)關(guān)鍵方程求解結(jié)構(gòu),其他模塊均采用九倍并行實(shí)現(xiàn)。由于進(jìn)行了超前運(yùn)算、流水線及并行處理,使編解碼的數(shù)據(jù)吞吐量大為提高,同時(shí)延時(shí)更小。 本論文設(shè)計(jì)了C++仿真平臺(tái),并與HDL代碼結(jié)果進(jìn)行了對(duì)比驗(yàn)證。Verilog HDL代碼經(jīng)過modelsim仿真驗(yàn)證,并在ALTERA STRATIX3 EP3SL15OF1152C2 FPGA上進(jìn)行綜合驗(yàn)證以及靜態(tài)時(shí)序分析,綜合軟件為QUATURSⅡ V8.0。驗(yàn)證及測(cè)試表明,本設(shè)計(jì)在滿足編解碼基本功能的基礎(chǔ)上,能夠?qū)崿F(xiàn)數(shù)據(jù)的高吞吐量和低延時(shí)傳輸,達(dá)到性能指標(biāo)要求。本論文在基于FPGA的RS(255,223)編解碼器的高速并行實(shí)現(xiàn)方面的研究成果,具有通用性、可移植性,有一定的理論及經(jīng)濟(jì)價(jià)值。
上傳時(shí)間: 2013-04-24
上傳用戶:思琦琦
蟲蟲下載站版權(quán)所有 京ICP備2021023401號(hào)-1