同步是移動通信領域中的關鍵技術,是保障通信初始和進行的必要過程,對系統(tǒng)的性能影響重大。縱觀移動通信系統(tǒng)的發(fā)展史,同步技術自始至終都是人們研究的熱點。 @@ WCDMA作為第三代移動通信無線接口標準之一,已經(jīng)在全世界范圍內(nèi)得到了商用。小區(qū)搜索是WCDMA的重要物理層過程,是實現(xiàn)下行移動臺和基站間同步的重要手段。 @@ 作為ASIC領域的一種半定制電路,現(xiàn)場可編程門陣列(FPGA)既解決了全定制電路不能修改的不足,又解決了原有可編程器件容量有限的問題。FPGA以其強大的現(xiàn)場可編程能力和開發(fā)速度優(yōu)勢,逐漸成為ASIC電路中設計周期最短、開發(fā)費用最低、風險最小的器件之一。 @@ 因此,研究WCDMA同步算法及其在FPGA中的實現(xiàn)與驗證是具有理論和現(xiàn)實意義的。本文首先介紹了WCDMA物理層基礎,接著詳細討論了WCDMA主同步、輔同步和導頻同步的原理,介紹了前兩步同步的改進型算法和證明,并和傳統(tǒng)相關算法在資源和實現(xiàn)復雜度方面進行了比較,給出了下行同步的浮點仿真結果和分析。之后,深入討論了下行同步的FPGA (V4-SX-35)實現(xiàn)方案、運算流程和模塊間的接口設計。最后,介紹了下行同步的FPGA驗證方法。 @@ 本文較為深入的討論了WCDMA下行同步的算法和FPGA實現(xiàn)方案,給出了理論分析和仿真、實驗結果。并在低復雜度和資源開銷條件下,完成了FPGA的硬件設計和片上測試,達到了系統(tǒng)的性能指標。 @@關鍵詞:WCDMA;同步;小區(qū)搜索;FPGA
上傳時間: 2013-04-24
上傳用戶:wsm555
隨著電力電子技術、微處理器技術、控制理論及永磁材料等技術的快速發(fā)展,以永磁同步電機作為控制對象的傳動領域得到了越來越廣泛的關注,隨著FPGA的技術的普及和廣泛應用,使得各種先進的控制算法得以實現(xiàn),于是數(shù)字化、智能化的永磁交流控制器成為必然的發(fā)展趨勢和當前的研究熱點。本文的主要工作就是圍繞數(shù)字化的永磁同步電機控制器研究來展開。首先深入研究了永磁同步電機的數(shù)學建模方法及電機控制策略問題。在對永磁同步電機的數(shù)學模型進行了推導的基礎上,在PSIM仿真軟件中建立了永磁同步電機的電機模型,提出了一種永磁同步電機傳統(tǒng)控制系統(tǒng)仿真建模的新方法。其次對常用的數(shù)字脈寬調(diào)制方法進行了數(shù)學推導,并對滑模控制理論和矢量控制進行了深入的研究分析,將滑模變結構控制應用于永磁同步電機的調(diào)速系統(tǒng)中,改善了傳統(tǒng)PI控制器參數(shù)整定繁瑣、系統(tǒng)魯棒性差的缺點,仿真結果驗證了該系統(tǒng)設計方案的優(yōu)越性。最后在永磁同步電機建模仿真的基礎上,根據(jù)永磁同步電機控制器的設計要求及FPGA的特點,提出永磁同步電機控制器的的設計方案。按照FPGA模塊化設計思想,將整個系統(tǒng)進行了合理的劃分,分別對SVPWM、Park變換、SMC、反饋速度測量等重要模塊的FPGA硬件實現(xiàn)算法進行了深入的研究。各模塊在Modelsim平臺上完成功能仿真后并下載到Spartan-3E開發(fā)板上完成硬件驗證,驗證結果表明:永磁同步電機在低速和高速時都能穩(wěn)定運行,從而證實了本設計方案的可行性。
上傳時間: 2013-04-24
上傳用戶:wff
同步技術在許多通訊系統(tǒng)中都是至關重要的,而WCDMA作為第三代移動通信的標準之一,對其同步算法進行研究是非常必要的。FPGA在許多硬件實現(xiàn)中充當了很重要的角色,所以研究如何在FPGA上實現(xiàn)同步算法是非常具有實際意義的。 本文討論了三步小區(qū)搜索的算法,仿真了其性能,并且對如何進行算法的FPGA移植展開了深入的討論。 本文對三步小區(qū)搜索的算法按照算法計算量和運算速度的標準分別進行了比較和討論,并以節(jié)省資源和運行穩(wěn)定為前提進行了FPGA移植。最終在主同步中提出了改進型的PSC匹配濾波器算法,在FPGA上提出了采用指針型雙口RAM的實現(xiàn)方式;在輔同步中提出了改進型PFHT算法并采用查表遍歷算法判決,在FPGA上提出了用綜合型邏輯方式來實現(xiàn);在導頻同步中采用了移位寄存器式擾碼生成算法,并引入了計分制判決算法。 與以往的WCDMA同步的FPGA實現(xiàn)相比,本文提出的實現(xiàn)方案巧妙地利用了FPGA的并行運算結構,在XILINX的V4芯片上只用了500個slice就完成了整個小區(qū)搜索,最大限度地節(jié)省了資源,為小區(qū)搜索在FPGA中的模塊小型化提供了途徑。
上傳時間: 2013-08-05
上傳用戶:leileiq
LED顯示屏作為一項高新科技產(chǎn)品正引起人們的高度重視,它以其動態(tài)范圍廣,亮度高,壽命長,工作性能穩(wěn)定而日漸成為顯示媒體中的佼佼者,現(xiàn)已廣泛應用于廣告、證券、交通、信息發(fā)布等各方面,且隨著全彩屏顯示技術的日益完善,LED顯示屏有著廣闊的市場前景。 本文主要研究的對象為全彩色LED同步顯示屏控制系統(tǒng),提出了一個系統(tǒng)實現(xiàn)方案,整個系統(tǒng)分三部分組成:DVI解碼電路、發(fā)送系統(tǒng)以及接收系統(tǒng)。DVI解碼模塊用于從顯卡的DVI口獲取視頻源數(shù)據(jù),經(jīng)過T.D.M.S.解碼恢復出可供LED屏顯示的紅、綠、藍共24位像素數(shù)據(jù)和一些控制信號。發(fā)送系統(tǒng)用于將收到的數(shù)據(jù)流進行緩存,經(jīng)處理后發(fā)送至以太網(wǎng)芯片進行以太網(wǎng)傳輸。接收系統(tǒng)接收以太網(wǎng)上傳來的視頻數(shù)據(jù)流,經(jīng)過位分離操作后存入SRAM進行緩存,再串行輸入至LED顯示屏進行掃描顯示。然后,從多方面論述了該方案的可行性,仔細推導了LED顯示屏各技術參數(shù)之間的聯(lián)系及約束關系。 本課題采用可編程邏輯器件來完成系統(tǒng)功能,可編程邏輯器件具有高集成度、高速度、在線可編程等特點,不僅可以滿足高速圖像數(shù)據(jù)處理對速度的要求,而且增加了設計的靈活性,不需修改電路硬件設計,縮短了設計周期,還可以進行在線升級。
上傳時間: 2013-04-24
上傳用戶:西伯利亞
頻率是電子技術領域內(nèi)的一個基本參數(shù),同時也是一個非常重要的參數(shù)。穩(wěn)定的時鐘在高性能電子系統(tǒng)中有著舉足輕重的作用,直接決定系統(tǒng)性能的優(yōu)劣。隨著電子技術的發(fā)展,測頻系統(tǒng)使用時鐘的提高,測頻技術有了相當大的發(fā)展,但不管是何種測頻方法,±1個計數(shù)誤差始終是限制測頻精度進一步提高的一個重要因素。 本設計闡述了各種數(shù)字測頻方法的優(yōu)缺點。通過分析±1個計數(shù)誤差的來源得出了一種新的測頻方法:檢測被測信號,時基信號的相位,當相位同步時開始計數(shù),相位再次同步時停止計數(shù),通過相位同步來消除計數(shù)誤差,然后再通過運算得到實際頻率的大小。根據(jù)M/T法的測頻原理,已經(jīng)出現(xiàn)了等精度的測頻方法,但是還存在±1的計數(shù)誤差。因此,本文根據(jù)等精度測頻原理中閘門時間只與被測信號同步,而不與標準信號同步的缺點,通過分析已有等精度澳孽頻方法所存在±1個計數(shù)誤差的來源,采用了全同步的測頻原理在FPGA器件上實現(xiàn)了全同步數(shù)字頻率計。根據(jù)全同步數(shù)字頻率計的測頻原理方框圖,采用VHDL語言,成功的編寫出了設計程序,并在MAX+PLUS Ⅱ軟件環(huán)境中,對編寫的VHDL程序進行了仿真,得到了很好的效果。最后,又討論了全同步頻率計的硬件設計并給出了電路原理圖和PCB圖。對構成全同步數(shù)字頻率計的每一個模塊,給出了較詳細的設計方法和完整的程序設計以及仿真結果。
標簽: FPGA 數(shù)字頻率計
上傳時間: 2013-06-05
上傳用戶:wys0120
碼元定時恢復(位同步)技術是數(shù)字通信中的關鍵技術。位同步信號本身的抖動、錯位會直接降低通信設備的抗干擾性能,使誤碼率上升,甚至會使傳輸遭到完全破壞。尤其對于突發(fā)傳輸系統(tǒng),快速、精確的定時同步算法是近年來研究的一個焦點。本文就是以Inmarsat GES/AES數(shù)據(jù)接收系統(tǒng)為背景,研究了突發(fā)通信傳輸模式下的全數(shù)字接收機中位同步方法,并予以實現(xiàn)。 本文系統(tǒng)地論述了位同步原理,在此基礎上著重研究了位同步的系統(tǒng)結構、碼元定時恢復算法以及衡量系統(tǒng)性能的各項指標,為后續(xù)工作奠定了基礎。 首先根據(jù)衛(wèi)星系統(tǒng)突發(fā)信道傳輸?shù)奶攸c分析了傳統(tǒng)位同步方法在突發(fā)系統(tǒng)中的不足,接下來對Inmarsat系統(tǒng)的短突發(fā)R信道和長突發(fā)T信道的調(diào)制方式和幀結構做了細致的分析,并在Agilent ADS中進行了仿真。 在此基礎上提出了一種充分利用報頭前導比特信息的,由滑動平均、閾值判斷和累加求極值組成的快速報頭時鐘捕獲方法,此方法可快速精準地完成短突發(fā)形式下的位同步,并在FPGA上予以實現(xiàn),效果良好。 在長突發(fā)形式下的報頭時鐘捕獲后還需要對后續(xù)數(shù)據(jù)進行位同步跟蹤,在跟蹤過程中本論文首先用DSP Builder實現(xiàn)了插值環(huán)路的位同步算法,進行了Matlab仿真和FPGA實現(xiàn)。并在插值環(huán)路的基礎上做出改進,提出了一種新的高效的基于移位算法的位同步方案并予以FPGA實現(xiàn)。最后將移位算法與插值算法進行了性能比較,證明該算法更適合于本項目中Inmarsat的長突發(fā)信道位同步跟蹤。 論文對兩個突發(fā)信道的位同步系統(tǒng)進行了理論研究、算法設計以及硬件實現(xiàn)的全過程,滿足系統(tǒng)要求。
上傳時間: 2013-04-24
上傳用戶:yare
在工業(yè)控制領域,多種現(xiàn)場總線標準共存的局面從客觀上促進了工業(yè)以太網(wǎng)技術的迅速發(fā)展,國際上已經(jīng)出現(xiàn)了HSE、Profinet、Modbus TCP/IP、Ethernet/IP、Ethernet Powerlink、EtherCAT等多種工業(yè)以太網(wǎng)協(xié)議。將傳統(tǒng)的商用以太網(wǎng)應用于工業(yè)控制系統(tǒng)的現(xiàn)場設備層的最大障礙是以太網(wǎng)的非實時性,而實現(xiàn)現(xiàn)場設備間的高精度時鐘同步是保證以太網(wǎng)高實時性的前提和基礎。 IEEE 1588定義了一個能夠在測量和控制系統(tǒng)中實現(xiàn)高精度時鐘同步的協(xié)議——精確時間協(xié)議(Precision Time Protocol)。PTP協(xié)議集成了網(wǎng)絡通訊、局部計算和分布式對象等多項技術,適用于所有通過支持多播的局域網(wǎng)進行通訊的分布式系統(tǒng),特別適合于以太網(wǎng),但不局限于以太網(wǎng)。PTP協(xié)議能夠使異質(zhì)系統(tǒng)中各類不同精確度、分辨率和穩(wěn)定性的時鐘同步起來,占用最少的網(wǎng)絡和局部計算資源,在最好情況下能達到系統(tǒng)級的亞微級的同步精度。 基于PC機軟件的時鐘同步方法,如NTP協(xié)議,由于其實現(xiàn)機理的限制,其同步精度最好只能達到毫秒級;基于嵌入式軟件的時鐘同步方法,將時鐘同步模塊放在操作系統(tǒng)的驅動層,其同步精度能夠達到微秒級?,F(xiàn)場設備間微秒級的同步精度雖然已經(jīng)能滿足大多數(shù)工業(yè)控制系統(tǒng)對設備時鐘同步的要求,但是對于運動控制等需求高精度定時的系統(tǒng)來說,這仍然不夠?;谇度胧杰浖臅r鐘同步方法受限于操作系統(tǒng)中斷響應延遲時間不一致、晶振頻率漂移等因素,很難達到亞微秒級的同步精度。 本文設計并實現(xiàn)了一種基于FPGA的時鐘同步方法,以IEEE 1588作為時鐘同步協(xié)議,以Ethernet作為底層通訊網(wǎng)絡,以嵌入式軟件形式實現(xiàn)TCP/IP通訊,以數(shù)字電路形式實現(xiàn)時鐘同步模塊。這種方法充分利用了FPGA的特點,通過準確捕獲報文時間戳和動態(tài)補償晶振頻率漂移等手段,相對于嵌入式軟件時鐘同步方法實現(xiàn)了更高精度的時鐘同步,并通過實驗驗證了在以集線器互連的10Mbps以太網(wǎng)上能夠達到亞微秒級的同步精度。
上傳時間: 2013-08-04
上傳用戶:hn891122
在現(xiàn)代交流伺服系統(tǒng)中,矢量控制原理以及空間電壓矢量脈寬調(diào)制(SVPWM)技術使得交流電機能夠獲得和直流電機相媲美的性能。永磁同步電機(PMSM)是一個復雜耦合的非線性系統(tǒng)。本文在Matlab/Simulink環(huán)境下,通過對PMSM本體、d/q坐標系向a/b/c坐標系轉換等模塊的建立與組合,構建了永磁同步電機控制系統(tǒng)仿真模型。仿真結果證明了該系統(tǒng)模型的有效性。
標簽: MatlabSimulink PMSM 永磁同步電機
上傳時間: 2013-04-24
上傳用戶:liansi
電力線通信技術利用分布廣泛的低壓電力線作為通信信道,實現(xiàn)internet高速互連,為用戶提供互聯(lián)網(wǎng)訪問、視頻點播等服務,形成包括電力在內(nèi)的“四網(wǎng)合一”,目前正受到人們的關注。利用該技術,可以在居民區(qū)內(nèi)建立寬帶接入網(wǎng),也可以利用遍布家庭各個房間的電源插座組成家庭局域網(wǎng)。但是電力線是傳輸電能的,因此通過電力線傳輸數(shù)據(jù)有許多的問題需要解決。 OFDM(正交頻分復用)技術是實現(xiàn)電力線通信的一項熱門技術。OFDM采用添加循環(huán)前綴的技術,能有效地降低ICI(信道間干擾)和ISI(碼間干擾)。同時通過使用正交的子信道,大大提高了頻譜資源利用率。FPGA作為可編程邏輯器件,具有設計時間短、投資少、風險小的特點,而且可以反復修改,反復編程,直到完全滿足需要,具有其他方式無可比擬的方便性和靈活性,能夠加速數(shù)字系統(tǒng)的研發(fā)速度。本文著重研究了OFDM同步技術在FPGA上的實現(xiàn)。本論文主要是在項目組工作的基礎上構造雙路信號數(shù)據(jù)糾正算法流程,提出最佳采樣點與載波相位估計算法,完善中各個子模塊算法的硬件設計流程。內(nèi)容安排如下:第一章介紹OFDM(正交頻分復用)技術的發(fā)展歷史、技術原理。第二章介紹了PLD的分類、工藝和結構特點,以及FPGA的開發(fā)環(huán)境、開發(fā)流程和Verilog語言的特點。第三章對OFDM系統(tǒng)的同步模塊進行詳細的闡述。第四章是OFDM同步算法的在FPGA上的實現(xiàn),對各個子模塊進行仿真,給出了仿真波形圖和系統(tǒng)性能分析。最后,第五章總結了全文的工作,對OFDM技術的實現(xiàn)需要進一步完善的方面與后續(xù)工作進行了探討。
標簽: OFDM FPGA PLC 通信系統(tǒng)
上傳時間: 2013-04-24
上傳用戶:hgy9473
橫向磁通電機是近些年來出現(xiàn)的一種新型結構的電機,由于其轉矩密度和功率密度大的優(yōu)點受到了廣泛的關注,但我國對該種電機的研究尚處于起步階段。 本課題是國家863計劃項目——“新型稀土永磁電機設計與集成技術(課題編號:2002AA324020)”中有關橫向磁通永磁同步電動機的部分。本課題的目標就是要充分發(fā)揮橫向磁通電機功率密度和轉矩密度大的優(yōu)點,克服其功率因數(shù)低的缺點,對橫向磁通永磁同步電動機的磁場進行計算、分析,找出功率因數(shù)偏低的原因,并提出相應的改進方法和建議。在此基礎上進行樣機的研制,對理論成果進行驗證,并力爭樣機在性能和工藝指標上有所突破,部分指標達到國際領先水平。 本文介紹了橫向磁通永磁電機的特點及運行原理,并按照不同的分類方式介紹了橫向磁通電機的各種結構。三維磁場的有限元計算十分復雜、計算量大,因此傳統(tǒng)電機均采用簡化的二維磁場進行計算。但是橫向磁通電機由于結構特殊,無法采用簡化的二維磁場的計算方法進行分析。因此本文利用ANSYS軟件建立了樣機模型,對樣機進行了三維電磁場分析。在電磁場計算的基礎上,進行了電機空載反電勢,空載漏磁系數(shù),電磁轉矩等相關參數(shù)的計算,討論了橫向磁通永磁同步電動機的結構變化對參數(shù)的影響。本文特別針對橫向磁通永磁電機功率因數(shù)較低這一問題進行了分析,找出了功率因數(shù)偏低的原因,提出了相應的改善方法和建議,對橫向磁通電機的理論研究和設計應用分析方法進行了探討。本文利用電磁場計算的結果,完成了電機運行特性仿真,克服了采用傳統(tǒng)磁路等效的方法帶來的誤差。最后,通過與樣機測試結果的對照研究,驗證和完善分析方法,并為進一步獲得性能更加優(yōu)異的樣機奠定了基礎。
上傳時間: 2013-04-24
上傳用戶:a296386173