/****************temic*********t5557***********************************/ #include <at892051.h> #include <string.h> #include <intrins.h> #include <stdio.h> #define uchar unsigned char #define uint unsigned int #define ulong unsigned long //STC12C2051AD的SFR定義 sfr WDT_CONTR = 0xe1;//stc2051的看門狗?????? /**********全局常量************/ //寫卡的命令 #define write_command0 0//寫密碼 #define write_command1 1//寫配置字 #define write_command2 2//密碼寫數據 #define write_command3 3//喚醒 #define write_command4 4//停止命令 #define TRUE 1 #define FALSE 0 #define OK 0 #define ERROR 255 //讀卡的時間參數us #define ts_min 250//270*11.0592/12=249//取近似的整數 #define ts_max 304//330*11.0592/12=304 #define t1_min 73//90*11.0592/12=83:-10調整 #define t1_max 156//180*11.0592/12=166 #define t2_min 184//210*11.0592/12=194 #define t2_max 267//300*11.0592/12=276 //***********不采用中斷處理:采用查詢的方法讀卡時關所有中斷****************/ sbit p_U2270B_Standby = P3^5;//p_U2270B_Standby PIN=13 sbit p_U2270B_CFE = P3^3;//p_U2270B_CFE PIN=6 sbit p_U2270B_OutPut = P3^7;//p_U2270B_OutPut PIN=2 sbit wtd_sck = P1^7;//SPI總線 sbit wtd_si = P1^3; sbit wtd_so = P1^2; sbit iic_data = P1^2;//lcd IIC sbit iic_clk = P1^7; sbit led_light = P1^6;//測試綠燈 sbit led_light1 = P1^5;//測試紅燈 sbit led_light_ok = P1^1;//讀卡成功標志 sbit fengmingqi = P1^5; /***********全局變量************************************/ uchar data Nkey_a[4] = {0xA0, 0xA1, 0xA2, 0xA3};//初始密碼 //uchar idata card_snr[4]; //配置字 uchar data bankdata[28] = {1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6,7}; //存儲卡上用戶數據(1-7)7*4=28 uchar data cominceptbuff[6] = {1,2,3,4,5,6};//串口接收數組ram uchar command; //第一個命令 uchar command1;// //uint temp; uchar j,i; uchar myaddr = 8; //uchar ywqz_count,time_count; //ywqz jishu: uchar bdata DATA; sbit BIT0 = DATA^0; sbit BIT1 = DATA^1; sbit BIT2 = DATA^2; sbit BIT3 = DATA^3; sbit BIT4 = DATA^4; sbit BIT5 = DATA^5; sbit BIT6 = DATA^6; sbit BIT7 = DATA^7; uchar bdata DATA1; sbit BIT10 = DATA1^0; sbit BIT11 = DATA1^1; sbit BIT12 = DATA1^2; sbit BIT13 = DATA1^3; sbit BIT14 = DATA1^4; sbit BIT15 = DATA1^5; sbit BIT16 = DATA1^6; sbit BIT17 = DATA1^7; bit i_CurrentLevel;//i_CurrentLevel BIT 00H(Saves current level of OutPut pin of U2270B) bit timer1_end; bit read_ok = 0; //緩存定時值,因用同一個定時器 union HLint { uint W; struct { uchar H;uchar L; } B; };//union HLint idata a union HLint data a; //緩存定時值,因用同一個定時器 union HLint0 { uint W; struct { uchar H; uchar L; } B; };//union HLint idata a union HLint0 data b; /**********************函數原型*****************/ //讀寫操作 void f_readcard(void);//全部讀出1~7 AOR喚醒 void f_writecard(uchar x);//根據命令寫不同的內容和操作 void f_clearpassword(void);//清除密碼 void f_changepassword(void);//修改密碼 //功能子函數 void write_password(uchar data *data p);//寫初始密碼或數據 void write_block(uchar x,uchar data *data p);//不能用通用指針 void write_bit(bit x);//寫位 /*子函數區*****************************************************/ void delay_2(uint x) //延時,時間x*10us@12mhz,最小20us@12mhz { x--; x--; while(x) { _nop_(); _nop_(); x--; } _nop_();//WDT_CONTR=0X3C;不能頻繁的復位 _nop_(); } ///////////////////////////////////////////////////////////////////// void initial(void) { SCON = 0x50; //串口方式1,允許接收 //SCON =0x50; //01010000B:10位異步收發,波特率可變,SM2=0不用接收到有效停止位才RI=1, //REN=1允許接收 TMOD = 0x21; //定時器1 定時方式2(8位),定時器0 定時方式1(16位) TCON = 0x40; //設定時器1 允許開始計時(IT1=1) TH1 = 0xfD; //FB 18.432MHz 9600 波特率 TL1 = 0xfD; //fd 11.0592 9600 IE = 0X90; //EA=ES=1 TR1 = 1; //啟動定時器 WDT_CONTR = 0x3c;//使能看門狗 p_U2270B_Standby = 0;//單電源 PCON = 0x00; IP = 0x10;//uart you xian XXXPS PT1 PX1 PT0 PX0 led_light1 = 1; led_light = 0; p_U2270B_OutPut = 1; } /************************************************/ void f_readcard()//讀卡 { EA = 0;//全關,防止影響跳變的定時器計時 WDT_CONTR = 0X3C;//喂狗 p_U2270B_CFE = 1;// delay_2(232); //>2.5ms /* // aor 用喚醒功能來防碰撞 p_U2270B_CFE = 0; delay_2(18);//start gap>150us write_bit(1);//10=操作碼讀0頁 write_bit(0); write_password(&bankdata[24]);//密碼block7 p_U2270B_CFE =1 ;// delay_2(516);//編程及確認時間5.6ms */ WDT_CONTR = 0X3C;//喂狗 led_light = 0; b.W = 0; while(!(read_ok == 1)) { //while(p_U2270B_OutPut);//等一個穩定的低電平?超時判斷? while(!p_U2270B_OutPut);//等待上升沿的到來同步信號檢測1 TR0 = 1; //deng xia jiang while(p_U2270B_OutPut);//等待下降沿 TR0 = 0; a.B.H = TH0; a.B.L = TL0; TH0 = TL0 = 0; TR0 = 1;//定時器晚啟動10個周期 //同步頭 if((324 < a.W) && (a.W < 353)) ;//檢測同步信號1 else { TR0 = 0; TH0 = TL0 = 0; goto read_error; } //等待上升沿 while(!p_U2270B_OutPut); TR0 = 0; a.B.H = TH0; a.B.L = TL0; TH0 = TL0 = 0; TR0 = 1;//b.N1<<=8; if(a.B.L < 195);//0.5p else { TR0 = 0; TH0 = TL0 = 0; goto read_error; } //讀0~7塊的數據 for(j = 0;j < 28;j++) { //uchar i; for(i = 0;i < 16;i++)//8個位 { //等待下降沿的到來 while(p_U2270B_OutPut); TR0 = 0; a.B.H = TH0; a.B.L = TL0; TH0 = TL0 = 0; TR0 = 1; if(t2_max < a.W/*)&&(a.W < t2_max)*/)//1P { b.W >>= 2;//先左移再賦值 b.B.L += 0xc0; i++; } else if(t1_min < a.B.L/*)&&(a.B.L < t1_max)*/)//0.5p { b.W >>= 1; b.B.L += 0x80; } else { TR0 = 0; TH0 = TL0 = 0; goto read_error; } i++; while(!p_U2270B_OutPut);//上升 TR0 = 0; a.B.H = TH0; a.B.L = TL0; TH0 = TL0 = 0; TR0 = 1; if(t2_min < a.W/*)&&(a.W < t2_max)*/)//1P { b.W >>= 2; i++; } else if(t1_min < a.B.L/*a.W)&&(a.B.L < t1_max)*/)//0.5P //else if(!(a.W==0)) { b.W >>= 1; //temp+=0x00; //led_light1=0;led_light=1;delay_2(40000); } else { TR0 = 0; TH0 = TL0 = 0; goto read_error; } i++; } //取出奇位 DATA = b.B.L; BIT13 = BIT7; BIT12 = BIT5; BIT11 = BIT3; BIT10 = BIT1; DATA = b.B.H; BIT17 = BIT7; BIT16 = BIT5; BIT15 = BIT3; BIT14 = BIT1; bankdata[j] = DATA1; } read_ok = 1;//讀卡完成了 read_error: _nop_(); } } /***************************************************/ void f_writecard(uchar x)//寫卡 { p_U2270B_CFE = 1; delay_2(232); //>2.5ms //psw=0 standard write if (x == write_command0)//寫密碼:初始化密碼 { uchar i; uchar data *data p; p = cominceptbuff; p_U2270B_CFE = 0; delay_2(31);//start gap>330us write_bit(1);//寫操作碼1:10 write_bit(0);//寫操作碼0 write_bit(0);//寫鎖定位0 for(i = 0;i < 35;i++) { write_bit(1);//寫數據位1 } p_U2270B_CFE = 1; led_light1 = 0; led_light = 1; delay_2(40000);//測試使用 //write_block(cominceptbuff[4],p); p_U2270B_CFE = 1; bankdata[20] = cominceptbuff[0];//密碼存入 bankdata[21] = cominceptbuff[1]; bankdata[22] = cominceptbuff[2]; bankdata[23] = cominceptbuff[3]; } else if (x == write_command1)//配置卡參數:初始化 { uchar data *data p; p = cominceptbuff; write_bit(1);//寫操作碼1:10 write_bit(0);//寫操作碼0 write_bit(0);//寫鎖定位0 write_block(cominceptbuff[4],p); p_U2270B_CFE= 1; } //psw=1 pssword mode else if(x == write_command2) //密碼寫數據 { uchar data*data p; p = &bankdata[24]; write_bit(1);//寫操作碼1:10 write_bit(0);//寫操作碼0 write_password(p);//發口令 write_bit(0);//寫鎖定位0 p = cominceptbuff; write_block(cominceptbuff[4],p);//寫數據 } else if(x == write_command3)//aor //喚醒 { //cominceptbuff[1]操作碼10 X xxxxxB uchar data *data p; p = cominceptbuff; write_bit(1);//10 write_bit(0); write_password(p);//密碼 p_U2270B_CFE = 1;//此時數據不停的循環傳出 } else //停止操作碼 { write_bit(1);//11 write_bit(1); p_U2270B_CFE = 1; } p_U2270B_CFE = 1; delay_2(560);//5.6ms } /************************************/ void f_clearpassword()//清除密碼 { uchar data *data p; uchar i,x; p = &bankdata[24];//原密碼 p_U2270B_CFE = 0; delay_2(18);//start gap>150us //操作碼10:10xxxxxxB write_bit(1); write_bit(0); for(x = 0;x < 4;x++)//發原密碼 { DATA = *(p++); for(i = 0;i < 8;i++) { write_bit(BIT0); DATA >>= 1; } } write_bit(0);//鎖定位0:0 p = &cominceptbuff[0]; write_block(0x00,p);//寫新配置參數:pwd=0 //密碼無效:即清除密碼 DATA = 0x00;//停止操作碼00000000B for(i = 0;i < 2;i++) { write_bit(BIT7); DATA <<= 1; } p_U2270B_CFE = 1; delay_2(560);//5.6ms } /*********************************/ void f_changepassword()//修改密碼 { uchar data *data p; uchar i,x,addr; addr = 0x07;//block7 p = &Nkey_a[0];//原密碼 DATA = 0x80;//操作碼10:10xxxxxxB for(i = 0;i < 2;i++) { write_bit(BIT7); DATA <<= 1; } for(x = 0;x < 4;x++)//發原密碼 { DATA = *(p++); for(i = 0;i < 8;i++) { write_bit(BIT7); DATA >>= 1; } } write_bit(0);//鎖定位0:0 p = &cominceptbuff[0]; write_block(0x07,p);//寫新密碼 p_U2270B_CFE = 1; bankdata[24] = cominceptbuff[0];//密碼存入 bankdata[25] = cominceptbuff[1]; bankdata[26] = cominceptbuff[2]; bankdata[27] = cominceptbuff[3]; DATA = 0x00;//停止操作碼00000000B for(i = 0;i < 2;i++) { write_bit(BIT7); DATA <<= 1; } p_U2270B_CFE = 1; delay_2(560);//5.6ms } /***************************子函數***********************************/ void write_bit(bit x)//寫一位 { if(x) { p_U2270B_CFE = 1; delay_2(32);//448*11.0592/120=42延時448us p_U2270B_CFE = 0; delay_2(28);//280*11.0592/120=26寫1 } else { p_U2270B_CFE = 1; delay_2(92);//192*11.0592/120=18 p_U2270B_CFE = 0; delay_2(28);//280*11.0592/120=26寫0 } } /*******************寫一個block*******************/ void write_block(uchar addr,uchar data *data p) { uchar i,j; for(i = 0;i < 4;i++)//block0數據 { DATA = *(p++); for(j = 0;j < 8;j++) { write_bit(BIT0); DATA >>= 1; } } DATA = addr <<= 5;//0地址 for(i = 0;i < 3;i++) { write_bit(BIT7); DATA <<= 1; } } /*************************************************/ void write_password(uchar data *data p) { uchar i,j; for(i = 0;i < 4;i++)// { DATA = *(p++); for(j = 0;j < 8;j++) { write_bit(BIT0); DATA >>= 1; } } } /*************************************************/ void main() { initial(); TI = RI = 0; ES = 1; EA = 1; delay_2(28); //f_readcard(); while(1) { f_readcard(); //讀卡 f_writecard(command1); //寫卡 f_clearpassword(); //清除密碼 f_changepassword(); //修改密碼 } }
標簽: 12345
上傳時間: 2017-10-20
上傳用戶:my_lcs
題目:古典問題:有一對兔子,從出生后第3個月起每個月都生一對兔子,小兔子長到第三個月后每個月又生一對兔子,假如兔子都不死,問每個月的兔子總數為多少? //這是一個菲波拉契數列問題 public class lianxi01 { public static void main(String[] args) { System.out.println("第1個月的兔子對數: 1"); System.out.println("第2個月的兔子對數: 1"); int f1 = 1, f2 = 1, f, M=24; for(int i=3; i<=M; i++) { f = f2; f2 = f1 + f2; f1 = f; System.out.println("第" + i +"個月的兔子對數: "+f2); } } } 【程序2】 題目:判斷101-200之間有多少個素數,并輸出所有素數。 程序分析:判斷素數的方法:用一個數分別去除2到sqrt(這個數),如果能被整除, 則表明此數不是素數,反之是素數。 public class lianxi02 { public static void main(String[] args) { int count = 0; for(int i=101; i<200; i+=2) { boolean b = false; for(int j=2; j<=Math.sqrt(i); j++) { if(i % j == 0) { b = false; break; } else { b = true; } } if(b == true) {count ++;System.out.println(i );} } System.out.println( "素數個數是: " + count); } } 【程序3】 題目:打印出所有的 "水仙花數 ",所謂 "水仙花數 "是指一個三位數,其各位數字立方和等于該數本身。例如:153是一個 "水仙花數 ",因為153=1的三次方+5的三次方+3的三次方。 public class lianxi03 { public static void main(String[] args) { int b1, b2, b3;
上傳時間: 2017-12-24
上傳用戶:Ariza
|- 我的虛擬機和ubuntu下載 - 0 B|- 騰訊課堂公開課 - 0 B|- 工具軟件 - 0 B|- X210光盤資料 - 0 B|- 4.C語言專題精講篇 - 0 B|- 2.uboot和linux內核移植 - 0 B|- 1.ARM裸機全集 - 0 B|- 0.基礎預科 - 0 B|- 專用播放器第一代-已不用,請下載第二代.rar - 18.10 MB|- 專用播放器-《朱老師物聯網大講堂》收費視頻.rar - 18.10 MB|- 朱老師物聯網大講堂高級課程專用播放器-第二代.rar - 28.10 MB
標簽: 物聯網
上傳時間: 2022-06-06
上傳用戶:
LTspice1.變壓器仿真的簡單步驟:A.為每個變壓器繞組繪制一個電感器B.采用一個互感(K)描述語句通過一條SPICE指令對其實施耦合:K1L1L21K語句的最后一項是耦合系數,其變化范圍介于0和1之間,1代表沒有漏電感。對于實際電路,建議您采用耦合系數=l作為起點。每個變壓器只需要一個K語句;LTspice為一個變壓器內部的所有電感器應用了單一耦合系數。下面所列是上述語句的等效語句:K1L1L21K2L2L31K3LlL31C.采用“移動”(F7)、“旋轉”(Ctrl+R)和“鏡像”(Ctrl+E)命令來調節電感器位置以與變壓器的極性相匹配。添加K語句可顯示所含電感器的調相點。D.LTspice采用個別組件值(在本場合中為個別電感器的電感)而非變壓器的匝數比進行變壓器的仿真。電感比與匝數比的對應關系如下:
標簽: ltspice
上傳時間: 2022-06-24
上傳用戶:
CPU:MSP430系列單片機的CPU和通用微處理器基本相同,只是在設計上采用了面向控制的結構和指令系統。MSP430的內核CPU結構是按照精簡指令集和高透明的宗旨而設計的,使用的指令有硬件執行的內核指令和基于現有硬件結構的仿真指令。這樣可以提高指令執行速度和效率,增強了MSP430的實時處理能力。存儲器:存儲程序、數據以及外圍模塊的運行控制信息。有程序存儲器和數據存儲器。對程序存儲器訪問總是以字形式取得代碼,而對數據可以用字或字節方式訪問。其中MSP430各系列單片機的程序存儲器有ROM、OTP、EPROM和FLASH型。外圍模塊:經過MAB、MDB、中斷服務及請求線與CPU相連。MSP430不同系列產品所包含外圍模塊的種類及數目可能不同。它們分別是以下一些外圍模塊的組合:時鐘模塊、看門狗、定時器A、定時器B、比較器A、串口0、1、硬件乘法器、液晶驅動器、模數轉換、數模轉換、端口、基本定時器、DMA控制器等。
上傳時間: 2022-07-28
上傳用戶:slq1234567890
VIP專區-嵌入式/單片機編程源碼精選合集系列(131)資源包含以下內容:1. nand flash k9f1208 的基于ARM 的讀寫源代碼..2. str711的I2C通訊的例程,分給大家..3. interrupt handler for at91rm92.4. 希爾伯特-黃變換的c程序.5. 關于嵌入式系統C語言變成規范的文檔。十分實用..6. 搜集的一款LABWINDOWS/CVI溫度采集顯示用戶界面設計源程序..7. MAX809MAX810三管腳的微處理器復位芯片.8. RS232在DSP2812通信中的編程程序.9. 這是2006年北京航空航天大學的嵌入式系統課件.10. S3C2410核心板的PCB圖.11. 某位高人總結的關于pcb問題的集合,呵呵.12. 128X64點陣屏 51測試程式.13. 本書不能讓你系統的學習嵌入式技術.14. 華恒嵌入式的培訓資料.15. 初學者在面對一個嵌入式開發項目的時候.16. 一個用adtlc2543采樣電視波形,顯示波形的51程序.17. 介紹了實現IPv4向IPv6過渡的隧道技術6to4.18. 一本很好的程序員的書.19. 一本很好的學習嵌入式的書.20. 嵌入式控制器硬件設計_英文版 關于嵌入式控制器硬件設計的一本很好的東西.21. arm 9 IIS 音頻實驗程序 s3c2410.22. 可用于quantus下 FPGA jtag和AS下載的下載器PCB圖.23. 鍵盤處理程序,針對51系列4*4鍵盤掃描程序.24. DA和液晶顯示 DA芯片將數字轉換為模擬并顯示.25. HDLC FCS 源碼 ,PIC C30.26. pid 算法的簡單程序.27. T6963液晶顯示屏驅動函數,在應用時只需調用就行。.28. 一各有關I2C送信息給LED的程序 很好用的說.29. 以MSP430來實現低通濾波 很不錯的範例.30. 利用MSP430來實現DA轉換 罕布錯用的.31. 基于PAL16BIT的基本程序,MP3的控制程序及音量調節程序.主要涉及GLITCH FREE DESIGN. 適合初學者..32. 智能小車導航.33. 使用大恒采集卡的圖像顯示.34. O Reilly-programming_embedded_systems_in_C_and_C++ 非常好的嵌入式編程書籍.35. Vishay的protel庫文件.36. Attend的protel庫文件.37. SUMSUNG2440的datasheet,已翻譯成中文..38. 實時嵌入式操作系統uC_OS_II在ARM9上的移植應用.39. TSM320C5000系列控制SPI25128器件的代碼.40. tcpmp外掛字幕插件subs_src 源碼.
上傳時間: 2013-04-15
上傳用戶:eeworm
本文以感應加熱電源為研究對象,闡述了感應加熱電源的基本原理及其發展趨勢。對感應加熱電源常用的兩種拓撲結構--電流型逆變器和電壓型逆變器做了比較分析,并分析了感應加熱電源的各種調功方式。在對比幾種功率調節方式的基礎上,得出在整流側調功有利于高頻感應加熱電源頻率和功率的提高的結論,選擇了不控整流加軟斬波器調功的感應加熱電源作為研究對象。針對傳統硬斬波調功式感應加熱電源功率損耗大的缺點,采用軟斬波調功方式,設計了一種零電流開關準諧振變換器ZCS-QRCs(Zero-current-switching-Quasi-resonant)倍頻式串聯諧振高頻感應加熱電源。介紹了該軟斬波調功器的組成結構及其工作原理,通過仿真和實驗的方法研究了該軟斬波器的性能,從而得出該軟斬波器非常適合大功率高頻感應加熱電源應用場合的結論。同時設計了功率閉環控制系統和PI功率調節器,將感應加熱電源的功率控制問題轉化為Buck斬波器的電壓控制問題。 針對目前IGBT器件頻率較低的實際情況,本文提出了一種新的逆變拓撲-通過IGBT的并聯來實現倍頻,從而在保證感應加熱電源大功率的前提下提高了其工作頻率,并在分析其工作原理的基礎上進行了仿真,驗證了理論分析的正確性,達到了預期的效果。另外,本文還設計了數字鎖相環(DPLL),使逆變器始終保持在功率因數近似為1的狀態下工作,實現電源的高效運行。最后,分析并設計了IGBT的緩沖吸收電路。 本文第五章設計了一臺150kHz、10KW的倍頻式感應加熱電源實驗樣機,其中斬波器頻率為20kHz,逆變器工作頻率為150kHz(每個IGBT工作頻率為75kHz),控制核心采用TI公司的TMS320F2812DSP控制芯片,簡化了系統結構。實驗結果表明,該倍頻式感應加熱電源實現了斬波器和逆變器功率器件的軟開關,有效的減小了開關損耗,并實現了數字化,提高了整機效率。文章給出了整機的結構設計,直流斬波部分控制框圖,逆變控制框圖,驅動電路的設計和保護電路的設計。同時,給出了關鍵電路的仿真和實驗波形。 實驗證明,以上分析和電路設計都是行之有效的,在實驗中取得很好的效果。
上傳時間: 2013-05-20
上傳用戶:lyy1234
文章開篇提出了開發背景。認為現在所廣泛應用的開關電源都是基于傳統的分立元件組成的。它的特點是頻率范圍窄、電力小、功能少、器件多、成本較高、精度低,對不同的客戶要求來“量身定做”不同的產品,同時幾乎沒有通用性和可移植性。在電子技術飛速發展的今天,這種傳統的模擬開關電源已經很難跟上時代的發展步伐。 隨著DSP、ASIC等電子器件的小型化、高速化,開關電源的控制部分正在向數字化方向發展。由于數字化,使開關電源的控制部分的智能化、零件的共通化、電源的動作狀態的遠距離監測成為了可能,同時由于它的智能化、零件的共通化使得它能夠靈活地應對不同客戶的需求,這就降低了開發周期和成本。依靠現代數字化控制和數字信號處理新技術,數字化開關電源有著廣闊的發展空間。 在數字化領域的今天,最后一個沒有數字化的堡壘就是電源領域。近年來,數字電源的研究勢頭與日俱增,成果也越來越多。雖然目前中國制造的開關電源占了世界市場的80%以上,但都是傳統的比較低端的模擬電源。高端市場上幾乎沒有我們份額。 本論文研究的主要內容是在傳統開關電源模擬調節器的基礎上,提出了一種新的數字化調節器方案,即基于DSP和FPGA的數字化PID調節器。論文對系統方案和電路進行了較為具體的設計,并通過測試取得了預期結果。測試證明該方案能夠適合本行業時代發展的步伐,使系統電路更簡單,精度更高,通用性更強。同時該方案也可用于相關領域。 本文首先分析了國內外開關電源發展的現狀,以及研究數字化開關電源的意義。然后提出了數字化開關電源的總體設計框圖和實現方案,并與傳統的開關電源做了較為詳細的比較。本論文的設計方案是采用DSP技術和FPGA技術來做數字化PID調節,通過數字化PID算法產生PWM波來控制斬波器,控制主回路。從而取代傳統的模擬PID調節器,使電路更簡單,精度更高,通用性更強。傳統的模擬開關電源是將電流電壓反饋信號做PID調節后--分立元器件構成,采用專用脈寬調制芯片實現PWM控制。電流反饋信號來自主回路的電流取樣,電壓反饋信號來自主回路的電壓采樣。再將這兩個信號分別送至電流調節器和電壓調節器的反相輸入端,用來實現閉環控制。同時用來保證系統的穩定性及實現系統的過流過壓保護、電流和電壓值的顯示。電壓、電流的給定信號則由單片機或電位器提供。再次,文章對各個模塊從理論和實際的上都做了仔細的分析和設計,并給出了具體的電路圖,同時寫出了軟件流程圖以及設計中應該注意的地方。整個系統由DSP板和ADC板組成。DSP板完成PWM生成、PID運算、環境開關量檢測、環境開關量生成以及本地控制。ADC板主要完成前饋電壓信號采集、負載電壓信號采集、負載電流信號采集、以及對信號的一階數字低通濾波。由于整個系統是閉環控制系統,要求采樣速率相當高。本系統采用FPGA來控制ADC,這樣就避免了高速采樣占用系統資源的問題,減輕了DSP的負擔。DSP可以將讀到的ADC信號做PID調節,從而產生PWM波來控制逆變橋的開關速率,從而達到閉環控制的目的。 最后,對數字化開關電源和模擬開關電源做了對比測試,得出了預期結論。同時也提出了一些需要改進的地方,認為該方案在其他相關行業中可以廣泛地應用。模擬控制電路因為使用許多零件而需要很大空間,這些零件的參數值還會隨著使用時間、溫度和其它環境條件的改變而變動并對系統穩定性和響應能力造成負面影響。數字電源則剛好相反,同時數字控制還能讓硬件頻繁重復使用、加快上市時間以及減少開發成本與風險。在當前對產品要求體積小、智能化、共通化、精度高和穩定度好等前提條件下,數字化開關電源有著廣闊的發展空間。本系統來基本上達到了設計要求。能夠滿足較高精度的設計要求。但對于高精度數字化電源,系統還有值得改進的地方,比如改進主控器,提高參考電壓的精度,提高采樣器件的精度等,都可以提高系統的精度。 本系統涉及電子、通信和測控等技術領域,將數字PID算法與電力電子技術、通信技術等有機地結合了起來。本系統的設計方案不僅可以用在電源控制器上,只要是相關的領域都可以采用。
上傳時間: 2013-06-29
上傳用戶:dreamboy36
數字濾波器是現代數字信號處理系統的重要組成部分之一。ⅡR數字濾波器又是其中非常重要的一類慮波器,因其可以較低的階次獲得較高的頻率選擇特性而得到廣泛應用。 本文研究了ⅡR數字濾波器的常用設計方法,在分析各種ⅡR實現結構的基礎上,利用MATLAB針對并聯型結構的ⅡR數字濾波器做了多方面的仿真,從理論分析和仿真情況確定了所要設計的ⅡR數字濾波器的實現結構以及中間數據精度。然后基于FPGA的結構特點,研究了ⅡR數字濾波器的FPGA設計與實現,提出應用流水線技術和并行處理技術相結合的方式來提高ⅡR數字濾波器處理速度的方法,同時又從ⅡR數字濾波器的結構特性出發,提出利用ⅡR數字濾波器的分解技術來改善ⅡR濾波器的設計。在ⅡR實現方面,本文采用Verilog HDL語言編寫了相應的硬件實現程序,將內置SignalTap Ⅱ邏輯分析器的ⅡR設計下載到FPGA芯片,并利用Altera公司的SignalTap Ⅱ邏輯分析儀進行了定性測試,同時利用HP頻譜儀進行定性與定量的觀測,仿真與實驗測試結果表明設計方法正確有效。
上傳時間: 2013-04-24
上傳用戶:rockjablew
目前電力系統正朝著設備數字化和網絡互聯化的方向發展,電力系統的行為也將會越來越復雜。作為電網故障分析必不可少的故障錄波器,電網的日趨復雜化對其性能提出了更高的要求。FPGA技術和嵌入式系統的發展為故障錄波器的性能改善提供了必要條件。 本文首先提出了一種基于以上技術的高性能分布式輸電線路故障錄波器的實現方案,簡要分析了其軟硬件結構和功能;接著針對故障錄波裝置中數據采集的高精度、高速度問題,提出了基于FPGA和AD7656的數據采集單元的設計方案;針對大容量故障數據的存儲問題,設計了在內嵌PowerPC微處理器的FPGA上實現SDRAM控制器的方案,并運用modelsim6.0仿真工具對設計的SDRAM控制器進行了仿真;研究了在內嵌PowerPC微處理器上構建嵌入式系統的問題;最后討論了行波測距算法在輸電線路故障錄波器中應用的相關問題。
上傳時間: 2013-07-17
上傳用戶:asddsd