偏振模色散(PMD)是限制光通信系統(tǒng)向高速率和大容量擴(kuò)展的主要障礙,尤其是160Gb/s光傳輸系統(tǒng)中,由PMD引起的脈沖畸變現(xiàn)象更加嚴(yán)重。為了克服PMD帶來的危害,國內(nèi)外已經(jīng)開始了對PMD補(bǔ)償?shù)难芯俊5悄壳暗难a(bǔ)償系統(tǒng)復(fù)雜、成本高且補(bǔ)償效果不理想,因此采用前向糾錯(FEC)和偏振擾偏器配合抑制PMD的方法,可以實現(xiàn)低成本的PMD補(bǔ)償。 在實驗中將擾偏器連入光時分復(fù)用系統(tǒng),通過觀察其工作前后的脈沖波形,發(fā)現(xiàn)擾偏器的應(yīng)用改善了系統(tǒng)的性能。隨著系統(tǒng)速率的提高,對擾偏器速率的要求也隨之提高,目前市場上擾偏器的速率無法滿足160Gb/s光傳輸系統(tǒng)要求。通過對偏振擾偏器原理的分析,決定采用高速控制電路驅(qū)動偏振控制器的方法來實現(xiàn)高速擾偏器的設(shè)計。擾偏器采用鈮酸鋰偏振控制器,其響應(yīng)時間小于100ns,是目前偏振控制器能夠達(dá)到的最高速率,但是將其用于160Gb/s高速光通信系統(tǒng)擾偏時,這個速率仍然偏低,因此,提出采用多段鈮酸鋰晶體并行擾偏的方法,彌補(bǔ)鈮酸鋰偏振控制器速率低的問題。通過對幾種處理器的分析和比較,選擇DSP+FPGA作為控制端,DSP芯片用于產(chǎn)生隨機(jī)數(shù)據(jù),F(xiàn)PGA芯片具有豐富的I/O引腳,工作頻率高,可以實現(xiàn)大量數(shù)據(jù)的快速并行輸出。這樣的方案可以充分發(fā)揮DSP和FPGA各自的優(yōu)勢。另外對數(shù)模轉(zhuǎn)換芯片也要求響應(yīng)速度快,本論文以FPGA為核心,完成了FPGA與其它芯片的接口電路設(shè)計。在QuartusⅡ集成環(huán)境中進(jìn)行FPGA的開發(fā),使用VHDL語言和原理圖輸入法進(jìn)行電路設(shè)計。 本文設(shè)計的偏振擾偏器在高速控制電路的驅(qū)動下,可以實現(xiàn)大量的數(shù)據(jù)處理,采用多段鈮酸鋰晶體并行工作的方法,可以提高偏振擾偏器的速率。利用本方案制作的擾偏器具有高擾偏速率,適合應(yīng)用于160Gb/s光通信系統(tǒng)中進(jìn)行PMD補(bǔ)償。
上傳時間: 2013-04-24
上傳用戶:suxuan110425
提出了采用兩段式同軸波紋慢波結(jié)構(gòu)實現(xiàn)雙頻高功率微波輸出的相對論返波振蕩器, 推導(dǎo)了該結(jié)構(gòu)的TM0n模式色散方程,數(shù)值求解了兩段式同軸波紋慢波結(jié)構(gòu)TM0n模色散曲線,分析了該器件X波段雙頻高功率微波輸出的產(chǎn)生機(jī)理, 分析中考慮了電子注在慢波結(jié)構(gòu)第二段工作效率不變和下降時的雙頻工作點情況,并運用2.5 維全電磁粒子模擬程序驗證了雙頻微波信號的可靠性。關(guān)鍵詞高功率微波;雙頻;X 波段;相對論返波振蕩器 當(dāng)前, 應(yīng)用于高功率微波效應(yīng)的微波器件只有一個主頻率,已有的實驗結(jié)果表明,在現(xiàn)有條件下,單頻高功率微波用于攻擊敵方的電子系統(tǒng)所需的功率遠(yuǎn)遠(yuǎn)大于單只高功率微波源所能產(chǎn)生的功率,即破壞閾值很高[1]。但是,如果用兩個或多個頻率相近的高功率微波波束產(chǎn)生拍頻后用于攻擊電子系統(tǒng),那么所需的功率密度將大大減小,即效應(yīng)閾值大大下降, 采用這種方式將有可能在現(xiàn)有的技術(shù)下使高功率微波實用化[2],但是雙頻及多頻高功率微波源器件的研究目前是十分前沿的課題,處于剛起步階段,在國內(nèi)外極少有報道[2~4],因而,用單個微波源器件產(chǎn)生穩(wěn)定輸出的雙頻甚至多頻高功率微波具有重要的實際應(yīng)用價值和學(xué)術(shù)價值,是高功率微波領(lǐng)域又一個新興的研究方向, 在高功率微波武器和新體制雷達(dá)等方面將有良好的應(yīng)用前景。
上傳時間: 2013-10-31
上傳用戶:kxyw404582151
第一講 光纖的分類 一, 光纖的分類 光纖是光導(dǎo)纖維(OF:Optical Fiber)的簡稱。但光通信系統(tǒng)中常常將 Optical Fibe(光纖)又簡化為 Fiber,例如:光纖放大器(Fiber Amplifier)或光纖干線(Fiber Backbone)等等。有人忽略了Fiber雖有纖維的含義,但在光系統(tǒng)中卻是指光纖而言的。因此,有些光產(chǎn)品的說明中,把fiber直譯成“纖維”,顯然是不可取的。 光纖實際是指由透明材料作成的纖芯和在它周圍采用比纖芯的折射率稍低的材料作成的包層所被覆,并將射入纖芯的光信號,經(jīng)包層界面反射,使光信號在纖芯中傳播前進(jìn)的媒體。 光纖的種類很多,根據(jù)用途不同,所需要的功能和性能也有所差異。但對于有線電視和通信用的光纖,其設(shè)計和制造的原則基本相同,諸如:①損耗小;②有一定帶寬且色散小;③接線容易;④易于成統(tǒng);⑤可靠性高;⑥制造比較簡單;⑦價廉等。
標(biāo)簽: 光纖 光接入網(wǎng)
上傳時間: 2013-10-27
上傳用戶:llandlu
慢波結(jié)構(gòu)是微波管重要的部件,它是電子注與高頻場相互作用進(jìn)行能量交換以實現(xiàn)微波振蕩或放大的場所。隨著對微波管性能越來越高的要求,微波管慢波結(jié)構(gòu)的效率和性能要求也隨之提高。文中首先分析了如何求解微波管慢波結(jié)構(gòu)的高頻特性,并在此基礎(chǔ)上使用了HFSS以及CST MWS等軟件對兩種新型微波管慢波結(jié)構(gòu)(環(huán)桿慢波結(jié)構(gòu)、折疊波導(dǎo)慢波結(jié)構(gòu))的高頻特性(色散特性、耦合阻抗)進(jìn)行了初步的仿真研究,并通過對結(jié)果的分析比較了兩個結(jié)構(gòu)的特性。
上傳時間: 2013-10-15
上傳用戶:258彼岸
設(shè)計了Ka波段螺旋線行波管的慢波結(jié)構(gòu),分析其色散特性曲線和耦合阻抗,對高頻系統(tǒng)進(jìn)行了優(yōu)化;利用PIC粒子模擬得到在工作頻帶內(nèi)飽和輸出功率>73.5 W,增益畸變<2%,并對試制樣管進(jìn)行了試驗,測得在工作頻帶內(nèi)輸出功率>45 W,電子效率>12.5%,采用4級降壓收集極后總效率大于40%,最后對模擬結(jié)果和實測結(jié)果的差異原因進(jìn)行了簡單分析。
上傳時間: 2013-12-14
上傳用戶:米米陽123
采用DQPSK 調(diào)制方式對NRZ, RZ 和CSRZ 3 種碼型進(jìn)行調(diào)制, 研究40 Gb/ s 高速傳輸系統(tǒng)中這3 種不同類型的光信號。使用色散補(bǔ)償方式對高速光纖傳輸系統(tǒng)進(jìn)行200 kM 的模擬仿真, 比較不同碼型的系統(tǒng)傳輸特性。分析表明CS- RZ- DQPSK 調(diào)制格式, 在較寬的入纖功率范圍內(nèi)都能取得最小的眼圖張開代價。
標(biāo)簽: DQPSK 高速傳輸 調(diào)制碼
上傳時間: 2013-10-17
上傳用戶:YKLMC
混合左右手材料的兩個通帶分別出現(xiàn)在2.5 GHz和6 GHz處。通過仿真獲得S11、S21和色散曲線,從理論上驗證了左手特性的存在。具有雙左手頻帶的左手材料將在未來四頻器件中得到廣泛應(yīng)用。
上傳時間: 2013-11-07
上傳用戶:lbbyxmoran
光波分復(fù)用的定義:是在一根光纖中同時傳輸多波長光信號的技術(shù)。• 基本原理:在發(fā)送端將不同波長的光信號復(fù)用,并耦合到同一根光纖中進(jìn)行傳輸,在接收端又將組合波長解復(fù)用,并進(jìn)一步處理,恢復(fù)出原信號后,送入不同的終端。 基本光纖類型• ITU G652 普通單模光纖(SMF)應(yīng)用窗口:1310nm,衰耗值:0.34dB/公里1510nm,衰耗值:0.2dB/公里ITU G653色散位移光纖(DSF)• ITU G655非零色散位移光纖
標(biāo)簽: DWDM
上傳時間: 2013-11-05
上傳用戶:xiaoyuer
附件是一款PCB阻抗匹配計算工具,點擊CITS25.exe直接打開使用,無需安裝。附件還帶有PCB連板的一些計算方法,連板的排法和PCB聯(lián)板的設(shè)計驗驗。 PCB設(shè)計的經(jīng)驗建議: 1.一般連板長寬比率為1:1~2.5:1,同時注意For FuJi Machine:a.最大進(jìn)板尺寸為:450*350mm, 2.針對有金手指的部分,板邊處需作掏空處理,建議不作為連板的部位. 3.連板方向以同一方向為優(yōu)先,考量對稱防呆,特殊情況另作處理. 4.連板掏空長度超過板長度的1/2時,需加補(bǔ)強(qiáng)邊. 5.陰陽板的設(shè)計需作特殊考量. 6.工藝邊需根據(jù)實際需要作設(shè)計調(diào)整,軌道邊一般不少於6mm,實際中需考量板邊零件的排布,軌道設(shè)備正常卡壓距離為不少於3mm,及符合實際要求下的連板經(jīng)濟(jì)性. 7.FIDUCIAL MARK或稱光學(xué)定位點,一般設(shè)計在對角處,為2個或4個,同時MARK點面需平整,無氧化,脫落現(xiàn)象;定位孔設(shè)計在板邊,為對稱設(shè)計,一般為4個,直徑為3mm,公差為±0.01inch. 8.V-cut深度需根據(jù)連板大小及基板板厚考量,角度建議為不少於45°. 9.連板設(shè)計的同時,需基於基板的分板方式考量<人工(治具)還是使用分板設(shè)備>. 10.使用針孔(郵票孔)聯(lián)接:需請考慮斷裂后的毛刺,及是否影響COB工序的Bonding機(jī)上的夾具穩(wěn)定工作,還應(yīng)考慮是否有無影響插件過軌道,及是否影響裝配組裝.
上傳時間: 2014-12-31
上傳用戶:sunshine1402
附件是一款PCB阻抗匹配計算工具,點擊CITS25.exe直接打開使用,無需安裝。附件還帶有PCB連板的一些計算方法,連板的排法和PCB聯(lián)板的設(shè)計驗驗。 PCB設(shè)計的經(jīng)驗建議: 1.一般連板長寬比率為1:1~2.5:1,同時注意For FuJi Machine:a.最大進(jìn)板尺寸為:450*350mm, 2.針對有金手指的部分,板邊處需作掏空處理,建議不作為連板的部位. 3.連板方向以同一方向為優(yōu)先,考量對稱防呆,特殊情況另作處理. 4.連板掏空長度超過板長度的1/2時,需加補(bǔ)強(qiáng)邊. 5.陰陽板的設(shè)計需作特殊考量. 6.工藝邊需根據(jù)實際需要作設(shè)計調(diào)整,軌道邊一般不少於6mm,實際中需考量板邊零件的排布,軌道設(shè)備正常卡壓距離為不少於3mm,及符合實際要求下的連板經(jīng)濟(jì)性. 7.FIDUCIAL MARK或稱光學(xué)定位點,一般設(shè)計在對角處,為2個或4個,同時MARK點面需平整,無氧化,脫落現(xiàn)象;定位孔設(shè)計在板邊,為對稱設(shè)計,一般為4個,直徑為3mm,公差為±0.01inch. 8.V-cut深度需根據(jù)連板大小及基板板厚考量,角度建議為不少於45°. 9.連板設(shè)計的同時,需基於基板的分板方式考量<人工(治具)還是使用分板設(shè)備>. 10.使用針孔(郵票孔)聯(lián)接:需請考慮斷裂后的毛刺,及是否影響COB工序的Bonding機(jī)上的夾具穩(wěn)定工作,還應(yīng)考慮是否有無影響插件過軌道,及是否影響裝配組裝.
上傳時間: 2013-10-15
上傳用戶:3294322651
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1