本文提出了一種基于CCD的微型光譜儀的系統設計方案。該方案選用CCD為光譜測量的探測器,光學系統采用折疊Czerny-Turner結構設計,大大減少了光學系統的體積;在探測系統方面,以現場可編程邏輯門陣列(FPGA)EPW7032設計了CCD驅動和信號采集系統。在FPGA上采用了片上可編程(SOPC)技術,集成了NiosII軟核UART、CPU等功能模塊,整個系統只用一片FPCA資源開發了CCD驅動電路、A/D采樣控制電路、USB驅動電路等模塊,使整個光譜儀系統的實現了單芯片控制。完成了基于USB的微型光譜儀和PC機的通訊,并使用Labview開發了光譜采集和處理軟件,實現對光譜儀的光譜數據處理、光譜譜線繪制、波長定標相關功能。最后,對本文的系統進行了相關實驗,實驗表明:按照該方案設計的微型光譜儀能同時對多個波長進行測量,整個光譜儀的體積重量達到了設計所要求的微型化、小型化。為了使CCD探測系統能檢測到較寬的光譜范圍,選擇3694個像素的線陣CCD作為探測器件。采用CD專用A/D轉換芯片M始X1101對CCD輸出信號進行相關及模數轉換處理,轉換后的數字信號暫時儲存在FPGA中,經處理后通過USB總線傳送到上位機,由應用軟件完成光譜數據進一步的分析、處理和顯示。FPGA作為整個系統的核心,完成了CCD驅動時序、MAX1101采樣時序和FT245BM(USB)芯片脈沖控制時序。
上傳時間: 2022-06-23
上傳用戶:
CCD作為一種光電轉換器件,由于其具有精度高、分辨率好、性能穩定等特點,目前廣泛應用于圖像傳感和非接觸式測量領域。在CCD應用技術中,最關鍵的兩個問題是CCD驅動時序的產生和CCD輸出信號的處理。對于CCD輸出信號,可以根據CCD像素頻率和輸出信號幅值來選擇合適的片外或片內模數轉換器;而對于CCD驅動時序,則有幾類常用的產生方法。1常用的CCD驅動時序產生方法CCD廠家眾多,型號各異,其驅動時序的產生方法也多種多樣,一般有以下4種:0)數字電路驅動方法這種方法是利用數字門電路及時序電路直接構建驅動時序電路,其核心是一個時鐘發生器和幾路時鐘分頻器,各分頻器對同一時鐘進行分頻以產生所需的各路脈沖。該方法的特點是可以獲得穩定的高速驅動脈沖,但邏輯設計和調試比較復雜,所用集成芯片較多,無法在線調整驅動頻率。
上傳時間: 2022-06-23
上傳用戶:
CCD 和CMOS 的區別一、CCD 和CMOS 在制造上的主要區別是CCD 是集成在半導體單晶材料上,而CMOS 是集成在被稱做金屬氧化物的半導體材料上,工作原理沒有本質的區別。CCD 只有少數幾個廠商例如索尼、松下等掌握這種技術。而且CCD 制造工藝較復雜,采用CCD 的攝像頭價格都會相對比較貴。事實上經過技術改造,目前CCD 和CMOS 的實際效果的差距已經減小了不少。而且CMOS 的制造成本和功耗都要低于CCD 不少,所以很多攝像頭生產廠商采用的CMOS 感光元件。成像方面:在相同像素下CCD 的成像通透性、明銳度都很好,色彩還原、曝光可以保證基本準確。而CMOS 的產品往往通透性一般,對實物的色彩還原能力偏弱, 曝光也都不太好, 由于自身物理特性的原因, CMOS 的成像質量和CCD還是有一定距離的。但由于低廉的價格以及高度的整合性, 因此在攝像頭領域還是得到了廣泛的應用。
上傳時間: 2022-06-23
上傳用戶:
機械工業是國民經濟的裝備部門,而標準化和計量測試是機械工業發展的基礎和先決條件。在機械制造中,精密加工必須靠精密的測量手段來保證,加工精度的提供與計量技術的發展水平密切相關。測量與控制是促進科技發展的一個重要因素。CCD(Charge Coupled Device),電荷耦合器件,是70年代初發展起來的新型半導體器件,其設計思想是由美國貝爾實驗室的Boyer與Smith于70年代提出]。二十多年來,CCD的研究取得了驚人的進展,特別是在傳感器應用方面發展迅速,已成為現代光電子學與現代測試技術中最活躍、最富有成果的新興領域之一。由于CCD具有自掃描、高分辨率、高靈敏度、重量輕、體積小、像素位置準確、耗電少、壽命長、可靠性好、信號處理方便、易于與計算機配合等優點,致使CCD光電尺寸測量的使用范圍和特性比現有的機械式、光學式、電磁式量儀優越得多。特別值得注意的是CCD尺寸測量技術是一種非常有效的非接觸檢測方法,它使加工、檢測和控制過程融為一體成為可能。利用CCD作為光敏感器件的激光三角法測量技術在非接觸尺寸、位置測量中得到了廣泛應用。它將激光束投射到被測物面所形成的漫反射光斑作為傳感信號,用透鏡成像原理將收集到的漫反射光匯集到CCD上形成像點,當入射光斑隨被測物面移動時,成像點在CCD上作相應移動,根據象移大小和傳感器的結構參數可以確定被測物面的位移量,若在物體兩邊同時測量就可以得到物體的厚度。
上傳時間: 2022-06-23
上傳用戶:xsr1983
最近入手了Pandaboard的高清攝像頭子板一塊,順便學習了MIPICSI2接口,給各位網友分享一下。這個高清攝像頭采用ov5640芯片,500萬像素,支持自動聚焦,這也是手機和平板里面用得比較多的一種cmos傳感芯片。OV5640同時支持并向和串行數據傳輸,當然串行傳輸(也就是MIPI方式)速度更快,能夠支持更高的分辨率,一般手機里300萬或者500萬像素的攝像頭一般都是MIPI接口。不妨再多提一下MIPI標準,MIPI是做移動應用處理器的幾家巨頭公司成立的聯盟,旨在定義移動應用處理器的接口標準,其全稱為“Mobile Industry Processor Interface”。現在用的比較多是MIPI框架中的攝像頭標準和顯示標準,即MIPICSI和MIPI DSI。CSI代表Camera Serial Interface,而DSI代表Display Serial Interface。現在CSI已經升級到CSI2.0版本,即MIPICSI2接口。本文所提到的Pandaboard 高清攝像頭使用的就是MIPICSI2接口。先貼一個Pandaboard安裝好攝像頭子板的圖片:
上傳時間: 2022-06-24
上傳用戶:jason_vip1
1引言有要發光二極管(OLED)具有低驅動電壓、寬溫工作、主動發光、響應速度快和視角寬等優點],其作為全彩顯示器件,與LCD相比,具有更簡單的工藝和更低的成本。近年,單色和局域色的OLED顯示屏已有較多報道~1,并推出了全彩OLED顯示屏~9]。本文研制了尺寸為1.9、分辨率為128(×3)×160的全彩OLED屏。在目前報道的同等或以下尺寸的采用無源矩陣(PM)驅動的全彩OLED屏中,該屏的分辨率處于較高水平。2全彩OLED屏2.1全彩技術的實現圖1是5種實現全彩OLED顯示屏技術的示意圖。本文采用(a)所示的平面結構式,每個全彩像素包括紅、綠和藍3個子像素,利用空間混色實現彩色。這種技術的難點是在制作全彩OLED時,需要將紅、綠和藍OLED的發光層(EML)材料分隔開01。屏的最高分辨率不僅受限于機械掩模制作的公差,還受限于在器件制作工藝過程中機械掩模與ITO基板玻璃的對準誤差。2.2P-OLED屏的驅動技術OLFD屬于電流型器件,其發光亮度與驅動電流成正比,故OLED均采用恒流源驅動。由于OLED自身較高的寄生電容(20~30pF/pixel)和ITO電極引線的電阻(幾~幾109/口形成的電壓降,對恒流源的性能提出了較高的要求,例如可提供高達~30V的電壓。為了實現多灰度顯示,電流必須可程控。lare公司為了精確控制每個OLED子像素的發光亮度,提出了預充電方案]。根據有無開關和驅動薄膜晶體管的存在,可將矩陣式OLED的驅動可分為P10l和有源矩陣AM112種。PM驅動的顯示器件由于制作工藝比AM要簡單得多,且成本低廉,故在小尺寸的顯示器件上得到了廣泛應用。PM驅動電路如圖2所示。
標簽: oled
上傳時間: 2022-06-24
上傳用戶:
HDMI系統架構由信源端和接收端組成。某個設備可能有一個或多個HDMI輸入,一個或多個HDMI輸出。這些設備上,每個HDMI輸入都應該遵循HDMI接收端規則,每個HDMI輸出都應該遵循HDMl信源端規則。如圖3-1所示,HDMI線纜和連接器提供四個差分線對,組成TMDS數據和時鐘通道。這些通道用于傳遞視頻,音頻和輔助數據。另外,HDMl提供一個VESADDC通道。DDC是用于配置和在一個單獨的信源端和一個單獨的接收端交換狀態。可選擇的CEC在用戶的各種不同的音視頻產品中,提供高水平的控制功能。可選擇的HDMl 以太網和音頻返回(HEAO,在連接的設備中提供以太網兼容的網絡數據和一個和TMDS相對方向的音頻回返通道。音頻,視頻和輔助數據在三個TMDS數據通道中傳輸。一個TMDS時鐘,典型地是以視頻像素速率,在TMDS時鐘通道中傳輸,它被接收端做為一個頻率參考,用于對三個TMDS數據通道的數據復原。在信源端,TMDS編碼將每個TMDS數據的8比特數據轉換成10位的DC平衡的最小變換序列,串行地,以每個TMDS時鐘周期10位地,在差分線對上發送。視頻數據,一個像素可以是24,30,36,48比特。視頻的默認24比特色深,在等于像素時鐘的TMDS時鐘上傳遞。更高的色深使用相應的更高的TMDS時鐘率。視頻格式 TMDS時鐘率低于25M(比如13.5M的480i/NTSC)可以使用重復像素發送的策略。視頻像素可以用RGBYCbCr4:4:4,YCbCr4:2:2格式編碼。為了在TMDS通道上發送音頻和輔助數據,HDMI使用一個報文結構。為了得到音頻和控制數據所需要的高可靠性,這個數據報文用BCH糾錯碼,使用特殊的差錯矯正,對發送的10位數據編碼。
標簽: 接口
上傳時間: 2022-07-03
上傳用戶:
LED電子顯示屏是利用發光二極管構成的點陣模塊或像素單元組成可變面積的顯示屏幕,在信息顯示領域得到了廣泛的應用,實現顯示屏的技術也有很多種。本文介紹了基于單片機80C51為控制器的16×64LED點陣顯示屏系統的設計。整機以美國ATMEL公司生產的40腳單片機AT89C51為核心,介紹了以它為控制系統的LED點陣電子顯示屏的動態設計和開發過程。通過該芯片控制一個行驅動器74LS154和八個列驅動器74HC595來驅動顯示屏顯示。該電子顯示屏可以顯示各種文字或單色圖像,全屏能顯示4個漢字,采用16塊8×8點陣LED顯示模塊來組成一個16×64點陣顯示模式。顯示采用動態顯示,使得圖形或文字能夠實現靜止、移入移出等多種顯示方式。本文介紹了利用Proteus7.10軟件進行原理圖的繪制,利用漢字轉換軟件將漢字轉換為將要發送給單片機的點陣數據,在kei1軟件當中采用C語言編程,與proteus進行聯調,并通過仿真軟件Proteus7.10最終實現自己設想的效果,總體上系統的設計簡單、顯示清晰、成本較低。
上傳時間: 2022-07-03
上傳用戶:
用C語言編寫的代碼,打印一個用數列,來描繪不同半徑的球。代碼主要突出程序控制流語句中的循環語句,幫助編程初學者學習。打印的數列的意思很難說明,沒必要糾結這個,如果你很快就能看懂那說明你很聰明。
標簽: C語言 visualstudio
上傳時間: 2022-07-04
上傳用戶:
便攜式B型超聲診斷儀具有無創傷、簡便易行、相對價廉等優勢,在臨床中越來越得到廣泛的應用。它將超聲波技術、微電子技術、計算機技術、機械設計與制造及生物醫學工程等技術融合在一起。開展該課題的研究對提高臨床診斷能力和促進我國醫療事業的發展具有重要的意義。 便攜式B型超聲診斷儀由人機交互系統、探頭、成像系統、顯示系統構成。其基本工作過程是:首先人機交互系統接收到用戶通過鍵盤或鼠標發出的命令,然后成像系統根據命令控制探頭發射超聲波,并對回波信號處理、合成圖像,最后通過顯示系統完成圖像的顯示。 成像系統作為便攜式B型超聲診斷儀的核心對圖像質量有決定性影響,但以前研制的便攜式B型超聲診斷儀的成像系統在三個方面存在不足:第一、采用的是單片機控制步進電機,控制精度不高,導致成像系統采樣不精確;第二、采用的數字掃描變換算法太粗糙,影響超聲圖像的分辨率;第三、它的CPU多采用的是51系列單片機,測量速度太慢,同時也不便于系統升級和擴展。 針對以上不足,提出了基于FPGA的B型超聲成像系統解決方案,采用Altera公司的EP2C5Q208C8芯片實現了步進電機步距角的細分,使電機旋轉更勻速,提高了采樣精度;提出并采用DSTI-ULA算法(Uniform Ladder Algorithm based on Double Sample and Trilinear Interotation)在FPGA內實現數字掃描變換,提高了圖像分辨率;人機交互系統采用S3C2410-AL作為CPU,改善了測量速度和系統的擴展性。 通過對系統硬件電路的設計、制作,軟件的編寫、調試,結果表明,本文所設計的便攜式B型超聲成像系統圖像分辨率高、測量速度快、體積小、操作方便。本文所設計的便攜式B型超聲診斷儀可在野外作業和搶險(諸如地震、抗洪)中發揮作用,同時也可在鄉村診所中完成對相關疾病的診斷工作。
上傳時間: 2013-05-18
上傳用戶:helmos