漢諾塔!!! Simulate the movement of the Towers of Hanoi puzzle Bonus is possible for using animation eg. if n = 2 A→B A→C B→C if n = 3 A→C A→B C→B A→C B→A B→C A→C
標簽: the animation Simulate movement
上傳時間: 2017-02-11
上傳用戶:waizhang
將魔王的語言抽象為人類的語言:魔王語言由以下兩種規則由人的語言逐步抽象上去的:α-〉β1β2β3…βm ;θδ1δ2…-〉θδnθδn-1…θδ1 設大寫字母表示魔王的語言,小寫字母表示人的語言B-〉tAdA,A-〉sae,eg:B(ehnxgz)B解釋為tsaedsaeezegexenehetsaedsae對應的話是:“天上一只鵝地上一只鵝鵝追鵝趕鵝下鵝蛋鵝恨鵝天上一只鵝地上一只鵝”。(t-天d-地s-上a-一只e-鵝z-追g-趕x-下n-蛋h-恨)
上傳時間: 2013-12-19
上傳用戶:aix008
【問題描述】 在一個N*N的點陣中,如N=4,你現在站在(1,1),出口在(4,4)。你可以通過上、下、左、右四種移動方法,在迷宮內行走,但是同一個位置不可以訪問兩次,亦不可以越界。表格最上面的一行加黑數字A[1..4]分別表示迷宮第I列中需要訪問并僅可以訪問的格子數。右邊一行加下劃線數字B[1..4]則表示迷宮第I行需要訪問并僅可以訪問的格子數。如圖中帶括號紅色數字就是一條符合條件的路線。 給定N,A[1..N] B[1..N]。輸出一條符合條件的路線,若無解,輸出NO ANSWER。(使用U,D,L,R分別表示上、下、左、右。) 2 2 1 2 (4,4) 1 (2,3) (3,3) (4,3) 3 (1,2) (2,2) 2 (1,1) 1 【輸入格式】 第一行是數m (n < 6 )。第二行有n個數,表示a[1]..a[n]。第三行有n個數,表示b[1]..b[n]。 【輸出格式】 僅有一行。若有解則輸出一條可行路線,否則輸出“NO ANSWER”。
標簽: 點陣
上傳時間: 2014-06-21
上傳用戶:llandlu
ARM CPU 指令集概念,特殊狀況處理方式 控制流程等介紹
上傳時間: 2013-12-31
上傳用戶:dbs012280
基本輸出入,與檔案處理。在Java程式的JFrame視窗使用AWT的List元件和File物件建立瀏覽檔案和資料夾。
標簽:
上傳時間: 2017-09-04
上傳用戶:225588
這是我自己寫的音框取決方法的程式,對於語音處理方面的使用者或許有幫助。
標簽: 程式
上傳時間: 2013-12-18
上傳用戶:aysyzxzm
Boost C++ Libraries Free peer-reviewed portable C++ source libraries Boost C++ Libraries 基本上是一個免費的 C++ 的跨平臺函式庫集合,基本上應該可以把它視為 C++ STL 的功能再延伸;他最大的特色在於他是一個經過「同行評審」(peer review,可參考維基百科)、開放原始碼的函式庫,而且有許多 Boost 的函式庫是由 C++ 標準委員會的人開發的,同時部分函式庫的功能也已經成為 C++ TR1 (Technical Report 1,參考維基百科)、TR2、或是 C++ 0x 的標準了。 它的官方網站是:http://www.boost.org/,包含了 104 個不同的 library;由於他提供的函式庫非常地多,的內容也非常地多元,根據官方的分類,大致上可以分為下面這二十類: 字串和文字處理(String and text processing) 容器(Containers) Iterators 演算法(Algorithms) Function objects and higher-order programming 泛型(Generic Programming) Template Metaprogramming Preprocessor Metaprogramming Concurrent Programming 數學與數字(Math and numerics) 正確性與測試(Correctness and testing) 資料結構(Data structures) 影像處理(Image processing) 輸入、輸出(Input/Output) Inter-language support 記憶體(Memory) 語法分析(Parsing) 程式介面(Programming Interfaces) 其他雜項 Broken compiler workarounds 其中每一個分類,又都包含了一個或多個函式庫,可以說是功能相當豐富。
上傳時間: 2015-05-15
上傳用戶:fangfeng
演算法評估 用空間和時間評估演算法效能 時間複雜度(Time Complexity) 空間複雜度(Space Complexity) 效能評估 效能分析(Performance Analysis):事前評估 效能評估(Performance Measurement):效能量測 評估時均假設處理的資料量為n到無窮大
標簽: 演算
上傳時間: 2015-06-13
上傳用戶:18007270712
實驗源代碼 //Warshall.cpp #include<stdio.h> void warshall(int k,int n) { int i , j, t; int temp[20][20]; for(int a=0;a<k;a++) { printf("請輸入矩陣第%d 行元素:",a); for(int b=0;b<n;b++) { scanf ("%d",&temp[a][b]); } } for(i=0;i<k;i++){ for( j=0;j<k;j++){ if(temp[ j][i]==1) { for(t=0;t<n;t++) { temp[ j][t]=temp[i][t]||temp[ j][t]; } } } } printf("可傳遞閉包關系矩陣是:\n"); for(i=0;i<k;i++) { for( j=0;j<n;j++) { printf("%d", temp[i][ j]); } printf("\n"); } } void main() { printf("利用 Warshall 算法求二元關系的可傳遞閉包\n"); void warshall(int,int); int k , n; printf("請輸入矩陣的行數 i: "); scanf("%d",&k); 四川大學實驗報告 printf("請輸入矩陣的列數 j: "); scanf("%d",&n); warshall(k,n); }
上傳時間: 2016-06-27
上傳用戶:梁雪文以
#include "iostream" using namespace std; class Matrix { private: double** A; //矩陣A double *b; //向量b public: int size; Matrix(int ); ~Matrix(); friend double* Dooli(Matrix& ); void Input(); void Disp(); }; Matrix::Matrix(int x) { size=x; //為向量b分配空間并初始化為0 b=new double [x]; for(int j=0;j<x;j++) b[j]=0; //為向量A分配空間并初始化為0 A=new double* [x]; for(int i=0;i<x;i++) A[i]=new double [x]; for(int m=0;m<x;m++) for(int n=0;n<x;n++) A[m][n]=0; } Matrix::~Matrix() { cout<<"正在析構中~~~~"<<endl; delete b; for(int i=0;i<size;i++) delete A[i]; delete A; } void Matrix::Disp() { for(int i=0;i<size;i++) { for(int j=0;j<size;j++) cout<<A[i][j]<<" "; cout<<endl; } } void Matrix::Input() { cout<<"請輸入A:"<<endl; for(int i=0;i<size;i++) for(int j=0;j<size;j++){ cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl; cin>>A[i][j]; } cout<<"請輸入b:"<<endl; for(int j=0;j<size;j++){ cout<<"第"<<j+1<<"個:"<<endl; cin>>b[j]; } } double* Dooli(Matrix& A) { double *Xn=new double [A.size]; Matrix L(A.size),U(A.size); //分別求得U,L的第一行與第一列 for(int i=0;i<A.size;i++) U.A[0][i]=A.A[0][i]; for(int j=1;j<A.size;j++) L.A[j][0]=A.A[j][0]/U.A[0][0]; //分別求得U,L的第r行,第r列 double temp1=0,temp2=0; for(int r=1;r<A.size;r++){ //U for(int i=r;i<A.size;i++){ for(int k=0;k<r-1;k++) temp1=temp1+L.A[r][k]*U.A[k][i]; U.A[r][i]=A.A[r][i]-temp1; } //L for(int i=r+1;i<A.size;i++){ for(int k=0;k<r-1;k++) temp2=temp2+L.A[i][k]*U.A[k][r]; L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r]; } } cout<<"計算U得:"<<endl; U.Disp(); cout<<"計算L的:"<<endl; L.Disp(); double *Y=new double [A.size]; Y[0]=A.b[0]; for(int i=1;i<A.size;i++ ){ double temp3=0; for(int k=0;k<i-1;k++) temp3=temp3+L.A[i][k]*Y[k]; Y[i]=A.b[i]-temp3; } Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1]; for(int i=A.size-1;i>=0;i--){ double temp4=0; for(int k=i+1;k<A.size;k++) temp4=temp4+U.A[i][k]*Xn[k]; Xn[i]=(Y[i]-temp4)/U.A[i][i]; } return Xn; } int main() { Matrix B(4); B.Input(); double *X; X=Dooli(B); cout<<"~~~~解得:"<<endl; for(int i=0;i<B.size;i++) cout<<"X["<<i<<"]:"<<X[i]<<" "; cout<<endl<<"呵呵呵呵呵"; return 0; }
標簽: 道理特分解法
上傳時間: 2018-05-20
上傳用戶:Aa123456789