含原理圖+電路圖+程序的波形發生器:在工作中,我們常常會用到波形發生器,它是使用頻度很高的電子儀器。現在的波形發生器都采用單片機來構成。單片機波形發生器是以單片機核心,配相應的外圍電路和功能軟件,能實現各種波形發生的應用系統,它由硬件部分和軟件部分組成,硬件是系統的基礎,軟件則是在硬件的基礎上,對其合理的調配和使用,從而完成波形發生的任務。 波形發生器的技術指標:(1) 波形類型:方型、正弦波、三角波、鋸齒波;(2) 幅值電壓:1V、2V、3V、4V、5V;(3) 頻率值:10HZ、20HZ、50HZ、100HZ、200HZ、500HZ、1KHZ;(4) 輸出極性:雙極性操作設計1、 機器通電后,系統進行初始化,LED在面板上顯示6個0,表示系統處于初始狀態,等待用戶輸入設置命令,此時,無任何波形信號輸出。2、 用戶按下“F”、“V”、“W”,可以分別進入頻率,幅值波形設置,使系統進入設置狀態,相應的數碼管顯示“一”,此時,按其它鍵,無效;3、 在進入某一設置狀態后,輸入0~9等數字鍵,(數字鍵僅在設置狀態時,有效)為欲輸出的波形設置相應參數,LED將參數顯示在面板上;4、 如果在設置中,要改變已設定的參數,可按下“CL”鍵,清除所有已設定參數,系統恢復初始狀態,LED顯示6個0,等待重新輸入命令;5、 當必要的參數設定完畢后,所有參數顯示于LED上,用戶按下“EN”鍵,系統會將各波形參數傳遞到波形產生模塊中,以便控制波形發生,實現不同頻率,不同電壓幅值,不同類型波形的輸出;6、 用戶按下“EN”鍵后,波形發生器開始輸出滿足參數的波形信號,面板上相應類型的運行指示燈閃爍,表示波形正在輸出,LED顯示波形類型編號,頻率值、電壓幅值等波形參數;7、 波形發生器在輸出信號時,按下任意一個鍵,就停止波形信號輸出,等待重新設置參數,設置過程如上所述,如果不改變參數,可按下“EN”鍵,繼續輸出原波形信號;8、 要停止波形發生器的使用,可按下復位按鈕,將系統復位,然后關閉電源。硬件組成部分通過綜合比較,決定選用獲得廣泛應用,性能價格高的常用芯片來構成硬件電路。單片機采用MCS-51系列的89C51(一塊),74LS244和74LS373(各一塊),反相驅動器 ULN2803A(一塊),運算放大器 LM324(一塊) 波形發生器的硬件電路由單片機、鍵盤顯示器接口電路、波形轉換(D/ A)電路和電源線路等四部分構成。1.單片機電路功能:形成掃描碼,鍵值識別,鍵功能處理,完成參數設置;形成顯示段碼,向LED顯示接口電路輸出;產生定時中斷;形成波形的數字編碼,并輸出到D/A接口電路;如電路原理圖所示: 89C51的P0口和P2口作為擴展I/O口,與8255、0832、74LS373相連接,可尋址片外的寄存器。單片機尋址外設,采用存儲器映像方式,外部接口芯片與內部存儲器統一編址,89C51提供16根地址線P0(分時復用)和P2,P2口提供高8位地址線,P0口提供低8位地址線。P0口同時還要負責與8255,0832的數據傳遞。P2.7是8255的片選信號,P2.6是0832(1)的片選,P2.5是0832(2)的片選,低電平有效,P0.0、P0.1經過74LS373鎖存后,送到8255的A1、A2作,片內A口,B口,C口,控制口等寄存器的字選。89C51的P1口的低4位連接4只發光三極管,作為波形類型指示燈,表示正在輸出的波形是什么類型。單片機89C51內部有兩個定時器/計數器,在波形發生器中使用T0作為中斷源。不同的頻率值對應不同的定時初值,定時器的溢出信號作為中斷請求。控制定時器中斷的特殊功能寄存器設置如下:定時控制寄存器TCON=(00010000)工作方式選擇寄存器(TMOD)=(00000000)中斷允許控制寄存器(IE)=(10000010)2、鍵盤顯示器接口電路功能:驅動6位數碼管動態顯示; 提供響應界面; 掃面鍵盤; 提供輸入按鍵。由并口芯片8255,鎖存器74LS273,74LS244,反向驅動器ULN2803A,6位共陰極數碼管(LED)和4×4行列式鍵盤組成。8255的C口作為鍵盤的I/O接口,C口的低4位輸出到掃描碼,高4位作為輸入行狀態,按鍵的分布如圖所示。8255的A口作為LED段碼輸出口,與74LS244相連接,B口作為LED的位選信號輸出口,與ULN2803A相連接。8255內部的4個寄存器地址分配如下:控制口:7FFFH , A口:7FFFCH , B口:7FFDH , C口:7FFEH 3、D/A電路功能:將波形樣值的數字編碼轉換成模擬值;完成單極性向雙極性的波形輸出;構成由兩片0832和一塊LM324運放組成。0832(1)是參考電壓提供者,單片機向0832(1)內的鎖存器送數字編碼,不同的編碼會產生不同的輸出值,在本發生器中,可輸出1V、2V、3V、4V、5V等五個模擬值,這些值作為0832(2)的參考電壓,使0832(2)輸出波形信號時,其幅度是可調的。0832(2)用于產生各種波形信號,單片機在波形產生程序的控制下,生成波形樣值編碼,并送到0832(2)中的鎖存器,經過D/A轉換,得到波形的模擬樣值點,假如N個點就構成波形的一個周期,那么0832(2)輸出N個樣值點后,樣值點形成運動軌跡,就是波形信號的一個周期。重復輸出N個點后,由此成第二個周期,第三個周期……。這樣0832(2)就能連續的輸出周期變化的波形信號。運放A1是直流放大器,運放A2是單極性電壓放大器,運放A3是雙極性驅動放大器,使波形信號能帶得起負載。地址分配:0832(1):DFFFH ,0832(2):BFFFH4、電源電路:功能:為波形發生器提供直流能量;構成由變壓器、整流硅堆,穩壓塊7805組成。220V的交流電,經過開關,保險管(1.5A/250V),到變壓器降壓,由220V降為10V,通過硅堆將交流電變成直流電,對于諧波,用4700μF的電解電容給予濾除。為保證直流電壓穩定,使用7805進行穩壓。最后,+5V電源配送到各用電負載。
上傳時間: 2013-11-08
上傳用戶:685
單片機音樂中音調和節拍的確定方法:調號-音樂上指用以確定樂曲主音高度的符號。很明顯一個八度就有12個半音。A、B、C、D、E、F、G。經過聲學家的研究,全世界都用這些字母來表示固定的音高。比如,A這個音,標準的音高為每秒鐘振動440周。 升C調:1=#C,也就是降D調:1=BD;277(頻率)升D調:1=#D,也就是降E調:1=BE;311升F調:1=#F,也就是降G調:1=BG;369升G調:1=#G,也就是降A調:1=BA;415升A調:1=#A,也就是降B調:1=BB。466,C 262 #C277 D 294 #D(bE)311 E 330 F 349 #F369 G 392 #G415A 440. #A466 B 494 所謂1=A,就是說,這首歌曲的“導”要唱得同A一樣高,人們也把這首歌曲叫做A調歌曲,或叫“唱A調”。1=C,就是說,這首歌曲的“導”要唱得同C一樣高,或者說“這歌曲唱C調”。同樣是“導”,不同的調唱起來的高低是不一樣的。各調的對應的標準頻率為: 單片機演奏音樂時音調和節拍的確定方法 經常看到一些剛學單片機的朋友對單片機演奏音樂比較有興趣,本人也曾是這樣。在此,本人將就這方面的知識做一些簡介,但愿能對單片機演奏音樂比較有興趣而又不知其解的朋友能有所啟迪。 一般說來,單片機演奏音樂基本都是單音頻率,它不包含相應幅度的諧波頻率,也就是說不能象電子琴那樣能奏出多種音色的聲音。因此單片機奏樂只需弄清楚兩個概念即可,也就是“音調”和“節拍”。音調表示一個音符唱多高的頻率,節拍表示一個音符唱多長的時間。 在音樂中所謂“音調”,其實就是我們常說的“音高”。在音樂中常把中央C上方的A音定為標準音高,其頻率f=440Hz。當兩個聲音信號的頻率相差一倍時,也即f2=2f1時,則稱f2比f1高一個倍頻程, 在音樂中1(do)與 ,2(來)與 ……正好相差一個倍頻程,在音樂學中稱它相差一個八度音。在一個八度音內,有12個半音。以1—i八音區為例, 12個半音是:1—#1、#1—2、2—#2、#2—3、3—4、4—#4,#4—5、5一#5、#5—6、6—#6、#6—7、7—i。這12個音階的分度基本上是以對數關系來劃分的。如果我們只要知道了這十二個音符的音高,也就是其基本音調的頻率,我們就可根據倍頻程的關系得到其他音符基本音調的頻率。 知道了一個音符的頻率后,怎樣讓單片機發出相應頻率的聲音呢?一般說來,常采用的方法就是通過單片機的定時器定時中斷,將單片機上對應蜂鳴器的I/O口來回取反,或者說來回清零,置位,從而讓蜂鳴器發出聲音,為了讓單片機發出不同頻率的聲音,我們只需將定時器予置不同的定時值就可實現。那么怎樣確定一個頻率所對應的定時器的定時值呢?以標準音高A為例: A的頻率f = 440 Hz,其對應的周期為:T = 1/ f = 1/440 =2272μs 由上圖可知,單片機上對應蜂鳴器的I/O口來回取反的時間應為:t = T/2 = 2272/2 = 1136μs這個時間t也就是單片機上定時器應有的中斷觸發時間。一般情況下,單片機奏樂時,其定時器為工作方式1,它以振蕩器的十二分頻信號為計數脈沖。設振蕩器頻率為f0,則定時器的予置初值由下式來確定: t = 12 *(TALL – THL)/ f0 式中TALL = 216 = 65536,THL為定時器待確定的計數初值。因此定時器的高低計數器的初值為: TH = THL / 256 = ( TALL – t* f0/12) / 256 TL = THL % 256 = ( TALL – t* f0/12) %256 將t=1136μs代入上面兩式(注意:計算時應將時間和頻率的單位換算一致),即可求出標準音高A在單片機晶振頻率f0=12Mhz,定時器在工作方式1下的定時器高低計數器的予置初值為 : TH440Hz = (65536 – 1136 * 12/12) /256 = FBH TL440Hz = (65536 – 1136 * 12/12)%256 = 90H根據上面的求解方法,我們就可求出其他音調相應的計數器的予置初值。 音符的節拍我們可以舉例來說明。在一張樂譜中,我們經常會看到這樣的表達式,如1=C 、1=G …… 等等,這里1=C,1=G表示樂譜的曲調,和我們前面所談的音調有很大的關聯, 、 就是用來表示節拍的。以 為例加以說明,它表示樂譜中以四分音符為節拍,每一小結有三拍。比如: 其中1 、2 為一拍,3、4、5為一拍,6為一拍共三拍。1 、2的時長為四分音符的一半,即為八分音符長,3、4的時長為八分音符的一半,即為十六分音符長,5的時長為四分音符的一半,即為八分音符長,6的時長為四分音符長。那么一拍到底該唱多長呢?一般說來,如果樂曲沒有特殊說明,一拍的時長大約為400—500ms 。我們以一拍的時長為400ms為例,則當以四分音符為節拍時,四分音符的時長就為400ms,八分音符的時長就為200ms,十六分音符的時長就為100ms。可見,在單片機上控制一個音符唱多長可采用循環延時的方法來實現。首先,我們確定一個基本時長的延時程序,比如說以十六分音符的時長為基本延時時間,那么,對于一個音符,如果它為十六分音符,則只需調用一次延時程序,如果它為八分音符,則只需調用二次延時程序,如果它為四分音符,則只需調用四次延時程序,依次類推。通過上面關于一個音符音調和節拍的確定方法,我們就可以在單片機上實現演奏音樂了。具體的實現方法為:將樂譜中的每個音符的音調及節拍變換成相應的音調參數和節拍參數,將他們做成數據表格,存放在存儲器中,通過程序取出一個音符的相關參數,播放該音符,該音符唱完后,接著取出下一個音符的相關參數……,如此直到播放完畢最后一個音符,根據需要也可循環不停地播放整個樂曲。另外,對于樂曲中的休止符,一般將其音調參數設為FFH,FFH,其節拍參數與其他音符的節拍參數確定方法一致,樂曲結束用節拍參數為00H來表示。下面給出部分音符(三個八度音)的頻率以及以單片機晶振頻率f0=12Mhz,定時器在工作方式1下的定時器高低計數器的予置初值 : C調音符 頻率Hz 262 277 293 311 329 349 370 392 415 440 466 494TH/TL F88B F8F2 F95B F9B7 FA14 FA66 FAB9 FB03 FB4A FB8F FBCF FC0BC調音符 1 1# 2 2# 3 4 4# 5 5# 6 6# 7頻率Hz 523 553 586 621 658 697 739 783 830 879 931 987TH/TL FC43 FC78 FCAB FCDB FD08 FD33 FD5B FD81 FDA5 FDC7 FDE7 FE05C調音符 頻率Hz 1045 1106 1171 1241 1316 1393 1476 1563 1658 1755 1860 1971TH/TL FB21 FE3C FE55 FE6D FE84 FE99 FEAD FEC0 FE02 FEE3 FEF3 FF02
上傳時間: 2013-10-20
上傳用戶:哈哈haha
PC機之間串口通信的實現一、實驗目的 1.熟悉微機接口實驗裝置的結構和使用方法。 2.掌握通信接口芯片8251和8250的功能和使用方法。 3.學會串行通信程序的編制方法。 二、實驗內容與要求 1.基本要求主機接收開關量輸入的數據(二進制或十六進制),從鍵盤上按“傳輸”鍵(可自行定義),就將該數據通過8251A傳輸出去。終端接收后在顯示器上顯示數據。具體操作說明如下:(1)出現提示信息“start with R in the board!”,通過調整乒乓開關的狀態,設置8位數據;(2)在小鍵盤上按“R”鍵,系統將此時乒乓開關的狀態讀入計算機I中,并顯示出來,同時顯示經串行通訊后,計算機II接收到的數據;(3)完成后,系統提示“do you want to send another data? Y/N”,根據用戶需要,在鍵盤按下“Y”鍵,則重復步驟(1),進行另一數據的通訊;在鍵盤按除“Y”鍵外的任意鍵,將退出本程序。2.提高要求 能夠進行出錯處理,例如采用奇偶校驗,出錯重傳或者采用接收方回傳和發送方確認來保證發送和接收正確。 三、設計報告要求 1.設計目的和內容 2.總體設計 3.硬件設計:原理圖(接線圖)及簡要說明 4.軟件設計框圖及程序清單5.設計結果和體會(包括遇到的問題及解決的方法) 四、8251A通用串行輸入/輸出接口芯片由于CPU與接口之間按并行方式傳輸,接口與外設之間按串行方式傳輸,因此,在串行接口中,必須要有“接收移位寄存器”(串→并)和“發送移位寄存器”(并→串)。能夠完成上述“串←→并”轉換功能的電路,通常稱為“通用異步收發器”(UART:Universal Asynchronous Receiver and Transmitter),典型的芯片有:Intel 8250/8251。8251A異步工作方式:如果8251A編程為異步方式,在需要發送字符時,必須首先設置TXEN和CTS#為有效狀態,TXEN(Transmitter Enable)是允許發送信號,是命令寄存器中的一位;CTS#(Clear To Send)是由外設發來的對CPU請求發送信號的響應信號。然后就開始發送過程。在發送時,每當CPU送往發送緩沖器一個字符,發送器自動為這個字符加上1個起始位,并且按照編程要求加上奇/偶校驗位以及1個、1.5個或者2個停止位。串行數據以起始位開始,接著是最低有效數據位,最高有效位的后面是奇/偶校驗位,然后是停止位。按位發送的數據是以發送時鐘TXC的下降沿同步的,也就是說這些數據總是在發送時鐘TXC的下降沿從8251A發出。數據傳輸的波特率取決于編程時指定的波特率因子,為發送器時鐘頻率的1、1/16或1/64。當波特率指定為16時,數據傳輸的波特率就是發送器時鐘頻率的1/16。CPU通過數據總線將數據送到8251A的數據輸出緩沖寄存器以后,再傳輸到發送緩沖器,經移位寄存器移位,將并行數據變為串行數據,從TxD端送往外部設備。在8251A接收字符時,命令寄存器的接收允許位RxE(Receiver Enable)必須為1。8251A通過檢測RxD引腳上的低電平來準備接收字符,在沒有字符傳送時RxD端為高電平。8251A不斷地檢測RxD引腳,從RxD端上檢測到低電平以后,便認為是串行數據的起始位,并且啟動接收控制電路中的一個計數器來進行計數,計數器的頻率等于接收器時鐘頻率。計數器是作為接收器采樣定時,當計數到相當于半個數位的傳輸時間時再次對RxD端進行采樣,如果仍為低電平,則確認該數位是一個有效的起始位。若傳輸一個字符需要16個時鐘,那么就是要在計數8個時鐘后采樣到低電平。之后,8251A每隔一個數位的傳輸時間對RxD端采樣一次,依次確定串行數據位的值。串行數據位順序進入接收移位寄存器,通過校驗并除去停止位,變成并行數據以后通過內部數據總線送入接收緩沖器,此時發出有效狀態的RxRDY信號通知CPU,通知CPU8251A已經收到一個有效的數據。一個字符對應的數據可以是5~8位。如果一個字符對應的數據不到8位,8251A會在移位轉換成并行數據的時候,自動把他們的高位補成0。 五、系統總體設計方案根據系統設計的要求,對系統設計的總體方案進行論證分析如下:1.獲取8位開關量可使用實驗臺上的8255A可編程并行接口芯片,因為只要獲取8位數據量,只需使用基本輸入和8位數據線,所以將8255A工作在方式0,PA0-PA7接實驗臺上的8位開關量。2.當使用串口進行數據傳送時,雖然同步通信速度遠遠高于異步通信,可達500kbit/s,但由于其需要有一個時鐘來實現發送端和接收端之間的同步,硬件電路復雜,通常計算機之間的通信只采用異步通信。3.由于8251A本身沒有時鐘,需要外部提供,所以本設計中使用實驗臺上的8253芯片的計數器2來實現。4:顯示和鍵盤輸入均使用DOS功能調用來實現。設計思路框圖,如下圖所示: 六、硬件設計硬件電路主要分為8位開關量數據獲取電路,串行通信數據發送電路,串行通信數據接收電路三個部分。1.8位開關量數據獲取電路該電路主要是利用8255并行接口讀取8位乒乓開關的數據。此次設計在獲取8位開關數據量時采用8255令其工作在方式0,A口輸入8位數據,CS#接實驗臺上CS1口,對應端口為280H-283H,PA0-PA7接8個開關。2.串行通信電路串行通信電路本設計中8253主要為8251充當頻率發生器,接線如下圖所示。
上傳時間: 2013-12-19
上傳用戶:小火車啦啦啦
單片機實用接口技術介紹了MCS-51系列單片機應用系統的各種實用接口技術及其配置。內容包括:MCS-51系列單片機組成原理:應用系統擴展、開發與調試;鍵盤輸入接口的設計及調試;打印機和顯示器接口及設計實例;模擬輸入通道接口技術;A/D、D/A、接口技術及在控制系統中的應用設計;V/F轉換器接口技術、串行通訊接口技術以及其它與應用系統設計有關的實用技術等。本書是為滿足廣大科技工作者從事單片機應用系統軟件、硬件設計的需要而編寫的,具有內容新穎、實用、全面的特色。所有的接口設計都包括詳細的設計步驟、硬件線路圖及故障分析,并附有測試程序清單。書中大部分接口軟、硬件設計實例都是作者多年來從事單片機應用和開發工作的經驗總結,實用性和工程性較強,尤其是對應用系統中必備的鍵盤、顯示器、打印機、A/D、D/A通訊接口設計、模擬信號處理及開發系統應用舉例甚多,目的是讓將要開始和正在從事單片機應用開發的科研人員根據自己的實際需要來選擇應用,一書在手即可基本完成單片機應用系統的開發工作。 MCS-51系列單片機實用接口技術目錄 第一章 MCS51系列單片機組成原理第二章 MCS-51單片機系統擴展第三章 MCS-51單片機應用系統的開發第四章 鍵盤及其按口技術第五章 顯示器接口設計第六章 打印機接口設計第七章 模擬輸入通道接口技術第八章 D/A轉換器與MSC-51單片機的接口設計與實踐第九章 A/D轉換器與MCS-51單片機的接口設計與實踐 第十章 V/F轉換器接口技術 第十一章 串行通訊按日技術第十二章應用系統設計中的實用技術附錄AMCS51單片機指令速查表附錄一常用EPROM固化電壓參考表
上傳時間: 2013-11-24
上傳用戶:hfnishi
MCS-51系列單片機實用接口技術全面、系統地介紹了MCS-51系列單片機應用系統的各種實用接口技術及其配置。內容包括:MCS-51系列單片機組成原理:應用系統擴展、開發與調試;鍵盤輸入接口的設計及調試;打印機和顯示器接口及設計實例;模擬輸入通道接口技術;A/D、D/A、接口技術及在控制系統中的應用設計;V/F轉換器接口技術、串行通訊接口技術以及其它與應用系統設計有關的實用技術等。本書是為滿足廣大科技工作者從事單片機應用系統軟件、硬件設計的需要而編寫的,具有內容新穎、實用、全面的特色。所有的接口設計都包括詳細的設計步驟、硬件線路圖及故障分析,并附有測試程序清單。書中大部分接口軟、硬件設計實例都是作者多年來從事單片機應用和開發工作的經驗總結,實用性和工程性較強,尤其是對應用系統中必備的鍵盤、顯示器、打印機、A/D、D/A通訊接口設計、模擬信號處理及開發系統應用舉例甚多,目的是讓將要開始和正在從事單片機應用開發的科研人員根據自己的實際需要來選擇應用,一書在手即可基本完成單片機應用系統的開發工作。 MCS-51系列單片機實用接口技術目錄 第一章 MCS51系列單片機組成原理第二章 MCS-51單片機系統擴展第三章 MCS-51單片機應用系統的開發第四章 鍵盤及其按口技術第五章 顯示器接口設計第六章 打印機接口設計第七章 模擬輸入通道接口技術第八章 D/A轉換器與MSC-51單片機的接口設計與實踐第九章 A/D轉換器與MCS-51單片機的接口設計與實踐 第十章 V/F轉換器接口技術 第十一章 串行通訊按日技術第十二章應用系統設計中的實用技術附錄AMCS51單片機指令速查表附錄一常用EPROM固化電壓參考表
上傳時間: 2013-11-04
上傳用戶:3294322651
串行通信的特點串行通信是主機與外設交換信息的一種方式。串行通信中字節數據經一條傳輸線按位串行發送與串行接收。串行通信節省通信線路,可遠距離傳送,成本低,廣泛應用在通信及計算機網絡系統中。串行通信中,數據傳輸速率低,控制較復雜。光纖技術的出現與發展,為串行通信開辟了美好前景。串行通信的術語全雙工、半雙工、單工全雙工: 通信雙方均有發送器和接收器,經兩條獨立的傳輸線相連, 雙方可同時接收與發送。 全雙工、半雙工、單工半雙工:通信雙方均有發送器和接收器,經一條傳輸線相連, 在某一時刻雙方只能一個方向傳輸信息,線路切換后可改變傳輸方向。 全雙工、半雙工、單工單工:通信一方為發送器,另一方為接收器,一條傳輸線相連, 進行單向傳輸。同步與異步通信方式同步方式:通信雙方用統一時鐘控制通信過程, 信息傳輸組成數據包(數據幀)。每 幀頭尾是控制代碼,中間是數據塊, 可有數百字節。不同的同步傳輸協 議有不同的數據幀格式。
上傳時間: 2013-11-19
上傳用戶:wvbxj
pic單片機實用教程(提高篇)以介紹PIC16F87X型號單片機為主,并適當兼顧PIC全系列,共分9章,內容包括:存儲器;I/O端口的復位功能;定時器/計數器TMR1;定時器TMR2;輸入捕捉/輸出比較/脈寬調制CCP;模/數轉換器ADC;通用同步/異步收發器USART;主控同步串行端口MSSP:SPI模式和I2C模式。突出特點:通俗易懂、可讀性強、系統全面、學練結合、學用并重、實例豐富、習題齊全。<br>本書作為Microchip公司大學計劃選擇用書,可廣泛適用于初步具備電子技術基礎和計算機知識基礎的學生、教師、單片機愛好者、電子制作愛好者、電器維修人員、電子產品開發設計者、工程技術人員閱讀。本教程全書共分2篇,即基礎篇和提高篇,分2冊出版,以適應不同課時和不同專業的需要,也為教師和讀者增加了一種可選方案。 第1章 EEPROM數據存儲器和FIASH程序存儲器1.1 背景知識1.1.1 通用型半導體存儲器的種類和特點1.1.2 PIC單片機內部的程序存儲器1.1.3 PIC單片機內部的EEPROM數據存儲器1.1.4 PIC16F87X內部EEPROM和FIASH操作方法1.2 與EEPROM相關的寄存器1.3 片內EEPROM數據存儲器結構和操作原理1.3.1 從EEPROM中讀取數據1.3.2 向EEPROM中燒寫數據1.4 與FLASH相關的寄存器1.5 片內FLASH程序存儲器結構和操作原理1.5.1 讀取FLASH程序存儲器1.5.2 燒寫FLASH程序存儲器1.6 寫操作的安全保障措施1.6.1 寫入校驗方法1.6.2 預防意外寫操作的保障措施1.7 EEPROM和FLASH應用舉例1.7.1 EEPROM的應用1.7.2 FIASH的應用思考題與練習題第2章 輸入/輸出端口的復合功能2.1 RA端口2.1.1 與RA端口相關的寄存器2.1.2 電路結構和工作原理2.1.3 編程方法2.2 RB端口2.2.1 與RB端口相關的寄存器2.2.2 電路結構和工作原理2.2.3 編程方法2.3 RC端口2.3.1 與RC端口相關的寄存器2.3.2 電路結構和工作原理2.3.3 編程方法2.4 RD端口2.4.1 與RD端口相關的寄存器2.4.2 電路結構和工作原理2.4.3 編程方法2.5 RE端口2.5.1 與RE端口相關的寄存器2.5.2 電路結構和工作原理2.5.3 編程方法2.6 PSP并行從動端口2.6.1 與PSP端口相關的寄存器2.6.2 電路結構和工作原理2.7 應用舉例思考題與練習題第3章 定時器/計數器TMR13.1 定時器/計數器TMR1模塊的特性3.2 定時器/計數器TMR1模塊相關的寄存器3.3 定時器/計數器TMR1模塊的電路結構3.4 定時器/計數器TMR1模塊的工作原理3.4.1 禁止TMR1工作3.4.2 定時器工作方式3.4.3 計數器工作方式3.4.4 TMR1寄存器的賦值與復位3.5 定時器/計數器TMR1模塊的應用舉例思考題與練習題第4章 定時器TMR24.1 定時器TMR2模塊的特性4.2 定時器TMR2模塊相關的寄存器4.3 定時器TMR2模塊的電路結構4.4 定時器TMR2模塊的工作原理4.4.1 禁止TMR2工作4.4.2 定時器工作方式4.4.3 寄存器TMR2和PR2以及分頻器的復位4.4.4 TMR2模塊的初始化編程4.5 定時器TMR2模塊的應用舉例思考題與練習題第5章 輸入捕捉/輸出比較/脈寬調制CCP5.1 輸入捕捉工作模式5.1.1 輸入捕捉摸式相關的寄存器5.1.2 輸入捕捉模式的電路結構5.1.3 輸入捕捉摸式的工作原理5.1.4 輸入捕捉摸式的應用舉例5.2 輸出比較工作模式5.2.1 輸出比較模式相關的寄存器5.2.2 輸出比較模式的電路結構5.2.3 輸出比較模式的工作原理5.2.4 輸出比較模式的應用舉例5.3 脈寬調制輸出工作模式5.3.1 脈寬調制模式相關的寄存器5.3.2 脈寬調制模式的電路結構5.3.3 脈寬調制模式的工作原理5.3.4 脈定調制模式的應用舉例5.4 兩個CCP模塊之間相互關系思考題與練習題第6章 模/數轉換器ADC6.1 背景知識6.1.1 ADC種類與特點6.1.2 ADC器件的工作原理6.2 PIC16F87X片內ADC模塊6.2.1 ADC模塊相關的寄存器6.2.2 ADC模塊結構和操作原理6.2.3 ADC模塊操作時間要求6.2.4 特殊情況下的A/D轉換6.2.5 ADC模塊的轉換精度和分辨率6.2.6 ADC模塊的內部動作流程和傳遞函數6.2.7 ADC模塊的操作編程6.3 PIC16F87X片內ADC模塊的應用舉例思考題與練習題第7章 通用同步/異步收發器USART7.1 串行通信的基本概念7.1.1 串行通信的兩種基本方式7.1.2 串行通信中數據傳送方向7.1.3 串行通信中的控制方式7.1.4 串行通信中的碼型、編碼方式和幀結構7.1.5 串行通信中的檢錯和糾錯方式7.1.6 串行通信組網方式7.1.7 串行通信接口電路和參數7.1.8 串行通信的傳輸速率7.2 PIC16F87X片內通用同步/異步收發器USART模塊7.2.1 與USART模塊相關的寄存器7.2.2 USART波特率發生器BRG7.2.3 USART模塊的異步工作方式7.2.4 USART模塊的同步主控工作方式7.2.5 USART模塊的同步從動工作方式7.3 通用同步/異步收發器USART的應用舉例思考題與練習題第8章 主控同步串行端口MSSP——SPI模式8.1 SPI接口的背景知識8.1.1 SPI接口信號描述8.1.2 基于SPI的系統構成方式8.1.3 SPI接口工作原理8.1.4 兼容的MicroWire接口8.2 PIC16F87X的SPI接口8.2.1 SPI接口相關的寄存器8.2.2 SPI接口的結構和操作原理8.2.3 SPI接口的主控方式8.2.4 SPI接口的從動方式8.3 SPI接口的應用舉例思考題與練習題第9章 主控同步串行端口MSSP——I(平方)C模式9.1 I(平方)C總線的背景知識9.1.1 名詞術語9.1.2 I(平方)C總線的技術特點9.1.3 I(平方)C總線的基本工作原理9.1.4 I(平方)C總線信號時序分析9.1.5 信號傳送格式9.1.6 尋址約定9.1.7 技術參數9.1.8 I(平方)C器件與I(平方)C總線的接線方式9.1.9 相兼容的SMBus總線9.2 與I(平方)C總線相關的寄存器9.3 典型信號時序的產生方法9.3.1 波特率發生器9.3.2 啟動信號9.3.3 重啟動信號9.3.4 應答信號9.3.5 停止信號9.4 被控器通信方式9.4.1 硬件結構9.4.2 被主控器尋址9.4.3 被控器接收——被控接收器9.4.4 被控器發送——被控發送器9.4.5 廣播式尋址9.5 主控器通信方式9.5.1 硬件結構9.5.2 主控器發送——主控發送器9.5.3 主控器接收——主控接收器9.6 多主通信方式下的總線沖突和總線仲裁9.6.1 發送和應答過程中的總線沖突9.6.2 啟動過程中的總線沖突9.6.3 重啟動過程中的總線沖突9.6.4 停止過程中的總線沖突9.7 I(平方)C總線的應用舉例思考題與練習題附錄A 包含文件P16F877.INC附錄B 新版宏匯編器MPASM偽指令總表參考文獻
上傳時間: 2013-12-14
上傳用戶:xiaoyuer
AVR高速嵌入式單片機原理與應用(修訂版)詳細介紹ATMEL公司開發的AVR高速嵌入式單片機的結構;講述AVR單片機的開發工具和集成開發環境(IDE),包括Studio調試工具、AVR單片機匯編器和單片機串行下載編程;學習指令系統時,每條指令均有實例,邊學習邊調試,使學習者看得見指令流向及操作結果,真正理解每條指令的功能及使用注意事項;介紹AVR系列多種單片機功能特點、實用程序設計及應用實例;作為提高篇,講述簡單易學、適用AVR單片機的高級語言BASCOMAVR及ICC AVR C編譯器。 AVR高速嵌入式單片機原理與應用(修訂版) 目錄 第一章ATMEL單片機簡介1.1ATMEL公司產品的特點11.2AT90系列單片機簡介21.3AT91M系列單片機簡介2第二章AVR單片機系統結構2.1AVR單片機總體結構42.2AVR單片機中央處理器CPU62.2.1結構概述72.2.2通用寄存器堆92.2.3X、Y、Z寄存器92.2.4ALU運算邏輯單元92.3AVR單片機存儲器組織102.3.1可下載的Flash程序存儲器102.3.2內部和外部的SRAM數據存儲器102.3.3EEPROM數據存儲器112.3.4存儲器訪問和指令執行時序112.3.5I/O存儲器132.4AVR單片機系統復位162.4.1復位源172.4.2加電復位182.4.3外部復位192.4.4看門狗復位192.5AVR單片機中斷系統202.5.1中斷處理202.5.2外部中斷232.5.3中斷應答時間232.5.4MCU控制寄存器 MCUCR232.6AVR單片機的省電方式242.6.1休眠狀態242.6.2空閑模式242.6.3掉電模式252.7AVR單片機定時器/計數器252.7.1定時器/計數器預定比例器252.7.28位定時器/計數器0252.7.316位定時器/計數器1272.7.4看門狗定時器332.8AVR單片機EEPROM讀/寫訪問342.9AVR單片機串行接口352.9.1同步串行接口 SPI352.9.2通用串行接口 UART402.10AVR單片機模擬比較器452.10.1模擬比較器452.10.2模擬比較器控制和狀態寄存器ACSR462.11AVR單片機I/O端口472.11.1端口A472.11.2端口 B482.11.3端口 C542.11.4端口 D552.12AVR單片機存儲器編程612.12.1編程存儲器鎖定位612.12.2熔斷位612.12.3芯片代碼612.12.4編程 Flash和 EEPROM612.12.5并行編程622.12.6串行下載662.12.7可編程特性67第三章AVR單片機開發工具3.1AVR實時在線仿真器ICE200693.2JTAG ICE仿真器693.3AVR嵌入式單片機開發下載實驗器SL?AVR703.4AVR集成開發環境(IDE)753.4.1AVR Assembler編譯器753.4.2AVR Studio773.4.3AVR Prog783.5SL?AVR系列組態開發實驗系統793.6SL?AVR*.ASM源文件說明81第四章AVR單片機指令系統4.1指令格式844.1.1匯編指令844.1.2匯編器偽指令844.1.3表達式874.2尋址方式894.3數據操作和指令類型924.3.1數據操作924.3.2指令類型924.3.3指令集名詞924.4算術和邏輯指令934.4.1加法指令934.4.2減法指令974.4.3乘法指令1014.4.4取反碼指令1014.4.5取補指令1024.4.6比較指令1034.4.7邏輯與指令1054.4.8邏輯或指令1074.4.9邏輯異或指令1104.5轉移指令1114.5.1無條件轉移指令1114.5.2條件轉移指令1144.6數據傳送指令1354.6.1直接數據傳送指令1354.6.2間接數據傳送指令1374.6.3從程序存儲器直接取數據指令1444.6.4I/O口數據傳送指令1454.6.5堆棧操作指令1464.7位指令和位測試指令1474.7.1帶進位邏輯操作指令1474.7.2位變量傳送指令1514.7.3位變量修改指令1524.7.4其它指令1614.8新增指令(新器件)1624.8.1EICALL-- 延長間接調用子程序1624.8.2EIJMP--擴展間接跳轉1634.8.3ELPM--擴展裝載程序存儲器1644.8.4ESPM--擴展存儲程序存儲器1644.8.5FMUL--小數乘法1664.8.6FMULS--有符號數乘法1664.8.7FMULSU--有符號小數和無符號小數乘法1674.8.8MOVW--拷貝寄存器字1684.8.9MULS--有符號數乘法1694.8.10MULSU--有符號數與無符號數乘法1694.8.11SPM--存儲程序存儲器170 第五章AVR單片機AT90系列5.1AT90S12001725.1.1特點1725.1.2描述1735.1.3引腳配置1745.1.4結構縱覽1755.2AT90S23131835.2.1特點1835.2.2描述1845.2.3引腳配置1855.3ATmega8/8L1855.3.1特點1865.3.2描述1875.3.3引腳配置1895.3.4開發實驗工具1905.4AT90S2333/44331915.4.1特點1915.4.2描述1925.4.3引腳配置1945.5AT90S4414/85151955.5.1特點1955.5.2AT90S4414和AT90S8515的比較1965.5.3引腳配置1965.6AT90S4434/85351975.6.1特點1975.6.2描述1985.6.3AT90S4434和AT90S8535的比較1985.6.4引腳配置2005.6.5AVR RISC結構2015.6.6定時器/計數器2125.6.7看門狗定時器 2175.6.8EEPROM讀/寫2175.6.9串行外設接口SPI2175.6.10通用串行接口UART2175.6.11模擬比較器 2175.6.12模數轉換器2185.6.13I/O端口2235.7ATmega83/1632285.7.1特點2285.7.2描述2295.7.3ATmega83與ATmega163的比較2315.7.4引腳配置2315.8ATtiny10/11/122325.8.1特點2325.8.2描述2335.8.3引腳配置2355.9ATtiny15/L2375.9.1特點2375.9.2描述2375.9.3引腳配置2395 .10ATmega128/128L2395.10.1特點2405.10.2描述2415.10.3引腳配置2435.10.4開發實驗工具2455.11ATmega1612465.11.1特點2465.11.2描述2475.11.3引腳配置2475.12AVR單片機替代MCS51單片機249第六章實用程序設計6.1程序設計方法2506.1.1程序設計步驟2506.1.2程序設計技術2506.2應用程序舉例2516.2.1內部寄存器和位定義文件2516.2.2訪問內部 EEPROM2546.2.3數據塊傳送2546.2.4乘法和除法運算應用一2556.2.5乘法和除法運算應用二2556.2.616位運算2556.2.7BCD運算2556.2.8冒泡分類算法2556.2.9設置和使用模擬比較器2556.2.10半雙工中斷方式UART應用一2556.2.11半雙工中斷方式UART應用二2566.2.128位精度A/D轉換器2566.2.13裝載程序存儲器2566.2.14安裝和使用相同模擬比較器2566.2.15CRC程序存儲的檢查2566.2.164×4鍵區休眠觸發方式2576.2.17多工法驅動LED和4×4鍵區掃描2576.2.18I2C總線2576.2.19I2C工作2586.2.20SPI軟件2586.2.21驗證SLAVR實驗器及AT90S1200的口功能12596.2.22驗證SLAVR實驗器及AT90S1200的口功能22596.2.23驗證SLAVR實驗器及具有DIP40封裝的口功能第七章AVR單片機的應用7.1通用延時子程序2607.2簡單I/O口輸出實驗2667.2.1SLAVR721.ASM 2667.2.2SLAVR722.ASM2677.2.3SLAVR723.ASM2687.2.4SLAVR724.ASM2707.2.5SLAVR725.ASM2717.2.6SLAVR726.ASM2727.2.7SLAVR727.ASM2737.3綜合程序2747.3.1LED/LCD/鍵盤掃描綜合程序2747.3.2LED鍵盤掃描綜合程序2757.3.3在LED上實現字符8的循環移位顯示程序2757.3.4電腦放音機2777.3.5鍵盤掃描程序2857.3.6十進制計數顯示2867.3.7廉價的A/D轉換器2897.3.8高精度廉價的A/D轉換器2947.3.9星星燈2977.3.10按鈕猜數程序2987.3.11漢字的輸入3047.4復雜實用程序3067.4.110位A/D轉換3067.4.2步進電機控制程序3097.4.3測脈沖寬度3127.4.4LCD顯示8字循環3187.4.5LED電腦時鐘3247.4.6測頻率3307.4.7測轉速3327.4.8AT90S8535的A/D轉換334第八章BASCOMAVR的應用8.1基于高級語言BASCOMAVR的單片機開發平臺3408.2BASCOMAVR軟件平臺的安裝與使用3418.3AVR I/O口的應用3458.3.1LED發光二極管的控制3458.3.2簡易手控廣告燈3468.3.3簡易電腦音樂放音機3478.4LCD顯示器3498.4.1標準LCD顯示器的應用3498.4.2簡單游戲機--按鈕猜數3518.5串口通信UART3528.5.1AVR系統與PC的簡易通信3538.5.2PC控制的簡易廣告燈3548.6單總線接口和溫度計3568.7I2C總線接口和簡易IC卡讀寫器359第九章ICC AVR C編譯器的使用9.1ICC AVR的概述3659.1.1介紹ImageCraft的ICC AVR3659.1.2ICC AVR中的文件類型及其擴展名3659.1.3附注和擴充3669.2ImageCraft的ICC AVR編譯器安裝3679.2.1安裝SETUP.EXE程序3679.2.2對安裝完成的軟件進行注冊3679.3ICC AVR導游3689.3.1起步3689.3.2C程序的剖析3699.4ICC AVR的IDE環境3709.4.1編譯一個單獨的文件3709.4.2創建一個新的工程3709.4.3工程管理3719.4.4編輯窗口3719.4.5應用構筑向導3719.4.6狀態窗口3719.4.7終端仿真3719.5C庫函數與啟動文件3729.5.1啟動文件3729.5.2常用庫函數3729.5.3字符類型庫3739.5.4浮點運算庫3749.5.5標準輸入/輸出庫3759.5.6標準庫和內存分配函數3769.5.7字符串函數3779.5.8變量參數函數3799.5.9堆棧檢查函數3799.6AVR硬件訪問的編程3809.6.1訪問AVR的底層硬件3809.6.2位操作3809.6.3程序存儲器和常量數據3819.6.4字符串3829.6.5堆棧3839.6.6在線匯編3839.6.7I/O寄存器3849.6.8絕對內存地址3849.6.9C任務3859.6.10中斷操作3869.6.11訪問UART3879.6.12訪問EEPROM3879.6.13訪問SPI3889.6.14相對轉移/調用的地址范圍3889.6.15C的運行結構3889.6.16匯編界面和調用規則3899.6.17函數返回非整型值3909.6.18程序和數據區的使用3909.6.19編程區域3919.6.20調試3919.7應用舉例*3929.7.1讀/寫口3929.7.2延時函數3929.7.3讀/寫EEPROM3929.7.4AVR的PB口變速移位3939.7.5音符聲程序3939.7.68字循環移位顯示程序3949.7.7鋸齒波程序3959.7.8正三角波程序3969.7.9梯形波程序396附錄1AT89系列單片機簡介398附錄2AT94K系列現場可編程系統標準集成電路401附錄3指令集綜合404附錄4AVR單片機選型表408參 考 文 獻412
上傳時間: 2013-11-08
上傳用戶:xcy122677
九.輸入/輸出保護為了支持多任務,80386不僅要有效地實現任務隔離,而且還要有效地控制各任務的輸入/輸出,避免輸入/輸出沖突。本文將介紹輸入輸出保護。 這里下載本文源代碼。 <一>輸入/輸出保護80386采用I/O特權級IPOL和I/O許可位圖的方法來控制輸入/輸出,實現輸入/輸出保護。 1.I/O敏感指令輸入輸出特權級(I/O Privilege Level)規定了可以執行所有與I/O相關的指令和訪問I/O空間中所有地址的最外層特權級。IOPL的值在如下圖所示的標志寄存器中。 標 志寄存器 BIT31—BIT18 BIT17 BIT16 BIT15 BIT14 BIT13—BIT12 BIT11 BIT10 BIT9 BIT8 BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0 00000000000000 VM RF 0 NT IOPL OF DF IF TF SF ZF 0 AF 0 PF 1 CF I/O許可位圖規定了I/O空間中的哪些地址可以由在任何特權級執行的程序所訪問。I/O許可位圖在任務狀態段TSS中。 I/O敏感指令 指令 功能 保護方式下的執行條件 CLI 清除EFLAGS中的IF位 CPL<=IOPL STI 設置EFLAGS中的IF位 CPL<=IOPL IN 從I/O地址讀出數據 CPL<=IOPL或I/O位圖許可 INS 從I/O地址讀出字符串 CPL<=IOPL或I/O位圖許可 OUT 向I/O地址寫數據 CPL<=IOPL或I/O位圖許可 OUTS 向I/O地址寫字符串 CPL<=IOPL或I/O位圖許可 上表所列指令稱為I/O敏感指令,由于這些指令與I/O有關,并且只有在滿足所列條件時才可以執行,所以把它們稱為I/O敏感指令。從表中可見,當前特權級不在I/O特權級外層時,可以正常執行所列的全部I/O敏感指令;當特權級在I/O特權級外層時,執行CLI和STI指令將引起通用保護異常,而其它四條指令是否能夠被執行要根據訪問的I/O地址及I/O許可位圖情況而定(在下面論述),如果條件不滿足而執行,那么將引起出錯碼為0的通用保護異常。 由于每個任務使用各自的EFLAGS值和擁有自己的TSS,所以每個任務可以有不同的IOPL,并且可以定義不同的I/O許可位圖。注意,這些I/O敏感指令在實模式下總是可執行的。 2.I/O許可位圖如果只用IOPL限制I/O指令的執行是很不方便的,不能滿足實際要求需要。因為這樣做會使得在特權級3執行的應用程序要么可訪問所有I/O地址,要么不可訪問所有I/O地址。實際需要與此剛好相反,只允許任務甲的應用程序訪問部分I/O地址,只允許任務乙的應用程序訪問另一部分I/O地址,以避免任務甲和任務乙在訪問I/O地址時發生沖突,從而避免任務甲和任務乙使用使用獨享設備時發生沖突。 因此,在IOPL的基礎上又采用了I/O許可位圖。I/O許可位圖由二進制位串組成。位串中的每一位依次對應一個I/O地址,位串的第0位對應I/O地址0,位串的第n位對應I/O地址n。如果位串中的第位為0,那么對應的I/O地址m可以由在任何特權級執行的程序訪問;否則對應的I/O地址m只能由在IOPL特權級或更內層特權級執行的程序訪問。如果在I/O外層特權級執行的程序訪問位串中位值為1的位所對應的I/O地址,那么將引起通用保護異常。 I/O地址空間按字節進行編址。一條I/O指令最多可涉及四個I/O地址。在需要根據I/O位圖決定是否可訪問I/O地址的情況下,當一條I/O指令涉及多個I/O地址時,只有這多個I/O地址所對應的I/O許可位圖中的位都為0時,該I/O指令才能被正常執行,如果對應位中任一位為1,就會引起通用保護異常。 80386支持的I/O地址空間大小是64K,所以構成I/O許可位圖的二進制位串最大長度是64K個位,即位圖的有效部分最大為8K字節。一個任務實際需要使用的I/O許可位圖大小通常要遠小于這個數目。 當前任務使用的I/O許可位圖存儲在當前任務TSS中低端的64K字節內。I/O許可位圖總以字節為單位存儲,所以位串所含的位數總被認為是8的倍數。從前文中所述的TSS格式可見,TSS內偏移66H的字確定I/O許可位圖的開始偏移。由于I/O許可位圖最長可達8K字節,所以開始偏移應小于56K,但必須大于等于104,因為TSS中前104字節為TSS的固定格式,用于保存任務的狀態。 1.I/O訪問許可檢查細節保護模式下處理器在執行I/O指令時進行許可檢查的細節如下所示。 (1)若CPL<=IOPL,則直接轉步驟(8);(2)取得I/O位圖開始偏移;(3)計算I/O地址對應位所在字節在I/O許可位圖內的偏移;(4)計算位偏移以形成屏蔽碼值,即計算I/O地址對應位在字節中的第幾位;(5)把字節偏移加上位圖開始偏移,再加1,所得值與TSS界限比較,若越界,則產生出錯碼為0的通用保護故障;(6)若不越界,則從位圖中讀對應字節及下一個字節;(7)把讀出的兩個字節與屏蔽碼進行與運算,若結果不為0表示檢查未通過,則產生出錯碼為0的通用保護故障;(8)進行I/O訪問。設某一任務的TSS段如下: TSSSEG SEGMENT PARA USE16 TSS <> ;TSS低端固定格式部分 DB 8 DUP(0) ;對應I/O端口00H—3FH DB 10000000B ;對應I/O端口40H—47H DB 01100000B ;對用I/O端口48H—4FH DB 8182 DUP(0ffH) ;對應I/O端口50H—0FFFFH DB 0FFH ;位圖結束字節TSSLen = $TSSSEG ENDS 再假設IOPL=1,CPL=3。那么如下I/O指令有些能正常執行,有些會引起通用保護異常: in al,21h ;(1)正常執行 in al,47h ;(2)引起異常 out 20h,al ;(3)正常實行 out 4eh,al ;(4)引起異常 in al,20h ;(5)正常執行 out 20h,eax ;(6)正常執行 out 4ch,ax ;(7)引起異常 in ax,46h ;(8)引起異常 in eax,42h ;(9)正常執行 由上述I/O許可檢查的細節可見,不論是否必要,當進行許可位檢查時,80386總是從I/O許可位圖中讀取兩個字節。目的是為了盡快地執行I/O許可檢查。一方面,常常要讀取I/O許可位圖的兩個字節。例如,上面的第(8)條指令要對I/O位圖中的兩個位進行檢查,其低位是某個字節的最高位,高位是下一個字節的最低位。可見即使只要檢查兩個位,也可能需要讀取兩個字節。另一方面,最多檢查四個連續的位,即最多也只需讀取兩個字節。所以每次要讀取兩個字節。這也是在判別是否越界時再加1的原因。為此,為了避免在讀取I/O許可位圖的最高字節時產生越界,必須在I/O許可位圖的最后填加一個全1的字節,即0FFH。此全1的字節應填加在最后一個位圖字節之后,TSS界限范圍之前,即讓填加的全1字節在TSS界限之內。 I/O許可位圖開始偏移加8K所得的值與TSS界限值二者中較小的值決定I/O許可位圖的末端。當TSS的界限大于I/O許可位圖開始偏移加8K時,I/O許可位圖的有效部分就有8K字節,I/O許可檢查全部根據全部根據該位圖進行。當TSS的界限不大于I/O許可位圖開始偏移加8K時,I/O許可位圖有效部分就不到8K字節,于是對較小I/O地址訪問的許可檢查根據位圖進行,而對較大I/O地址訪問的許可檢查總被認為不可訪問而引起通用保護故障。因為這時會發生字節越界而引起通用保護異常,所以在這種情況下,可認為不足的I/O許可位圖的高端部分全為1。利用這個特點,可大大節約TSS中I/O許可位圖占用的存儲單元,也就大大減小了TSS段的長度。 <二>重要標志保護輸入輸出的保護與存儲在標志寄存器EFLAGS中的IOPL密切相關,顯然不能允許隨便地改變IOPL,否則就不能有效地實現輸入輸出保護。類似地,對EFLAGS中的IF位也必須加以保護,否則CLI和STI作為敏感指令對待是無意義的。此外,EFLAGS中的VM位決定著處理器是否按虛擬8086方式工作。 80386對EFLAGS中的這三個字段的處理比較特殊,只有在較高特權級執行的程序才能執行IRET、POPF、CLI和STI等指令改變它們。下表列出了不同特權級下對這三個字段的處理情況。 不同特權級對標志寄存器特殊字段的處理 特權級 VM標志字段 IOPL標志字段 IF標志字段 CPL=0 可變(初POPF指令外) 可變 可變 0 不變 不變 可變 CPL>IOPL 不變 不變 不變 從表中可見,只有在特權級0執行的程序才可以修改IOPL位及VM位;只能由相對于IOPL同級或更內層特權級執行的程序才可以修改IF位。與CLI和STI指令不同,在特權級不滿足上述條件的情況下,當執行POPF指令和IRET指令時,如果試圖修改這些字段中的任何一個字段,并不引起異常,但試圖要修改的字段也未被修改,也不給出任何特別的信息。此外,指令POPF總不能改變VM位,而PUSHF指令所壓入的標志中的VM位總為0。 <三>演示輸入輸出保護的實例(實例九)下面給出一個用于演示輸入輸出保護的實例。演示內容包括:I/O許可位圖的作用、I/O敏感指令引起的異常和特權指令引起的異常;使用段間調用指令CALL通過任務門調用任務,實現任務嵌套。 1.演示步驟實例演示的內容比較豐富,具體演示步驟如下:(1)在實模式下做必要準備后,切換到保護模式;(2)進入保護模式的臨時代碼段后,把演示任務的TSS段描述符裝入TR,并設置演示任務的堆棧;(3)進入演示代碼段,演示代碼段的特權級是0;(4)通過任務門調用測試任務1。測試任務1能夠順利進行;(5)通過任務門調用測試任務2。測試任務2演示由于違反I/O許可位圖規定而導致通用保護異常;(6)通過任務門調用測試任務3。測試任務3演示I/O敏感指令如何引起通用保護異常;(7)通過任務門調用測試任務4。測試任務4演示特權指令如何引起通用保護異常;(8)從演示代碼轉臨時代碼,準備返回實模式;(9)返回實模式,并作結束處理。
上傳時間: 2013-12-11
上傳用戶:nunnzhy
三種方法讀取鍵值 使用者設計行列鍵盤介面,一般常採用三種方法讀取鍵值。 中斷式 在鍵盤按下時產生一個外部中斷通知CPU,並由中斷處理程式通過不同位址讀資料線上的狀態判斷哪個按鍵被按下。 本實驗採用中斷式實現使用者鍵盤介面。 掃描法 對鍵盤上的某一行送低電位,其他為高電位,然後讀取列值,若列值中有一位是低,表明該行與低電位對應列的鍵被按下。否則掃描下一行。 反轉法 先將所有行掃描線輸出低電位,讀列值,若列值有一位是低表明有鍵按下;接著所有列掃描線輸出低電位,再讀行值。 根據讀到的值組合就可以查表得到鍵碼。4x4鍵盤按4行4列組成如圖電路結構。按鍵按下將會使行列連成通路,這也是見的使用者鍵盤設計電路。 //-----------4X4鍵盤程序--------------// uchar keboard(void) { uchar xxa,yyb,i,key; if((PINC&0x0f)!=0x0f) //是否有按鍵按下 {delayms(1); //延時去抖動 if((PINC&0x0f)!=0x0f) //有按下則判斷 { xxa=~(PINC|0xf0); //0000xxxx DDRC=0x0f; PORTC=0xf0; delay_1ms(); yyb=~(PINC|0x0f); //xxxx0000 DDRC=0xf0; //復位 PORTC=0x0f; while((PINC&0x0f)!=0x0f) //按鍵是否放開 { display(data); } i=4; //計算返回碼 while(xxa!=0) { xxa=xxa>>1; i--; } if(yyb==0x80) key=i; else if(yyb==0x40) key=4+i; else if(yyb==0x20) key=8+i; else if(yyb==0x10) key=12+i; return key; //返回按下的鍵盤碼 } } else return 17; //沒有按鍵按下 }
上傳時間: 2013-11-12
上傳用戶:a673761058