集散控制系統(Distributing Control System,縮寫DCS)是以多個微處理機為基礎利用現代網絡技術、現代控制技術、圖形顯示技術等實現對分散控制系統的調節、監視的控制技術。DCS具有功能分散,故障分散的優點,適合于上位機對多個下位機的管理和監控。本文將DCS技術應用到中央空調上,設計了中央空調的溫度模糊集散控制系統。 本系統在整體結構上采用集散控制的方案。一臺控制計算機(上位機)對各個空調房間的風機和水泵進行集中管理,若干臺下位機下放分散到現場實現分布式控制,上位機和各個下位機之間用控制網絡互連以實現相互之間的信息傳遞。 在控制策略上,針對被控量溫度的大慣性、時變性的特點,本文設計了溫度的二維模糊控制策略,該策略是基于專家和有經驗的操作人員的經驗進行調控的智能控制系統。模糊控制是以查詢模糊控制規則表的形式實現,模糊控制表可以隨著人們的經驗和知識的增長日益完善。 根據總體方案,設計下位機即開關磁阻電機(SRM)控制節點和信號采集節點的軟、硬件。主要工作包括SRM的就地和遠程兩種控制方式的實現、模/數和數/模轉換器的控制、模擬電壓的采集、溫度傳感器的選型、CAN網絡通信的硬、軟件,以及下位機的主程序的設計和調試等。 完成上述工作后,采用溫度開環和閉環分別進行了試驗。通過實驗證明,所設計方案的可行性。最后對中央空調溫度控制系統的運行性能進行了總結,對下一步用于該系統的研究與開發具有一定的參考價值。
上傳時間: 2013-04-24
上傳用戶:yangzhiwei
一個 較簡單 的 圖書 管理 系統
標簽: 圖書管理
上傳時間: 2013-06-01
上傳用戶:luke5347
控制器局域網(CAN)最初是由德國BOSCH公司為汽車的監測、控制系統設計的。它是一種有效的支持分布式控制或者實時控制的串行通信網絡。由于其具有多主機、高性能以及高可靠性,CAN總線已經廣泛應用于汽車電子控制、過程控制、機械工業、紡織機械、機器人、數控機床、醫療器械以及傳感器等領域。CAN總線已經形成國際標準,并已被公認為幾種最有前途的現場總線之一。 另一方面,隨著電動車的技術的不斷發展,電動車已經開始邁向了市場普及的道路。對于電動車電池的管理和維護越來越成為電動車發展的重點之一。由于CAN具有抗干擾性強、連接簡單、無主通信等特點,非常適合用來實現實時數據的采集和傳輸。因此,本文利用CAN總線為基礎設計了一個電池實時數據采集與管理系統,經分析、設計、編程和調試,在實際應用中得以實現。 該系統主要包括數據采集層,數據傳輸層和用戶管理層三個部分。數據采集層的主要任務是電池實時數據的采集和發送;數據傳輸層的主要功能是通過CAN總線接收數據采集層發送的實時數據,并將其轉換成RS232串口協議發送到上位機;用戶管理層的主要功能是通過串口接收數據,實時顯示,存儲和分析。 論文完成的主要工作有: (1) 通過對系統需求的分析,將整個系統分為三個獨立的層,分別進行了軟硬件設計,實現了系統的模塊化,增強了系統的應用性; (2) 詳細的研究了CAN2.0B協議和SAE J1939協議,并在此基礎上,編寫了適合本設計的通訊協議; (3) 深入研究了MC9S12DG128芯片的硬件結構和軟件設計方法; 本課題的創新點在于利用目前汽車工業廣泛采用的CAN總線協議,設計了一套簡單,高效,穩定的電池數據采集與管理系統,并在實際中得以應用。在系統設計過程中將整個系統分為3個層,大大提升了系統的模塊化水平,有利于系統的擴展和維護。
上傳時間: 2013-07-07
上傳用戶:1417818867
環境的不斷污染、石油能源的加劇消耗促使純電動車成為了各國各汽車廠商爭相研究的對象。而閥控免維護鉛酸蓄電池(VRLA)憑著其低廉的價格優勢占據了車用蓄電池的大部分市場份額。本文旨在開發一套完整的VRLA蓄電池管理系統,包括蓄電池狀態檢測、均衡充放電管理、溫度管理、充放電管理等。 本文首先討論了車用VRLA蓄電池的特性,包括其失效模式、改進方式以及各種充電方法對其物理上的影響。隨后,針對VRLA車用蓄電池,本文著重討論了電動汽車蓄電池的智能管理系統,第三章到第四章詳細介紹了裝載車內的管理系統(檢測系統、均衡系統);第五章著重討論了置于車外的充放電管理系統的設計和實現。 狀態檢測系統系統主要包括電池狀態采集系統以及剩余容量SoC、健康狀態SoH測量系統。本文針對電動汽車這個特殊應用場合,提出了一種新的同時基于AH定律、Peukert方程、溫度修正、SoH以及開路電壓的的容量預測方法。 均衡充電系統的目的是保持串聯電池組單體電池容量的均衡。均衡管理系統主要包括控制器、開關組件以及輔助均衡充電器三個部分。 主充電系統采用的是正負脈沖的充電方式,本系統通過一個全橋雙向DC/DC變流器來實現。主充電器的功率等級為20kW,在本課題組中,這個功率等級較之以往有較大的突破。
上傳時間: 2013-04-24
上傳用戶:飛翔的胸毛
斷路器是電力系統中重要的控制和保護設備,對維護電力系統的安全、穩定和可靠運行起著重要的作用。如何使斷路器高度智能化,并且更安全和可靠,是電力系統保護的發展要求,也是本論文研究的目的。 本文在深入研究了智能斷路器國內外發展狀況的基礎上,精心設計了以數字信號處理器DSP和復雜可編程邏輯器件CPLD為核心的系統硬件。DSP是智能斷路器測控單元的核心器件,它實現斷路器的各種保護、報警、顯示與控制功能。CPLD完成狀態量的監測,以及各種邏輯信號的輸出。兩種器件相互配合使得斷路器系統更加智能化。研究了斷路器測控單元的測量原理及保護算法,并進行了具體的硬件和軟件模塊的設計,旨在實現斷路器的智能保護、遠程控制和集中管理。本設計以TI公司的DSP芯片TMS320LF2407為核心。硬件設計主要包括信號調理模塊設計、信號采樣模塊設計、保護執行模塊設計、CPLD模塊設計和輸入輸出模塊設計。并且利用TMS320LF2407本身具有的CAN2.0模塊,通過CAN總線實現斷路器和上位機的通信,實現遙測、遙調、遙控、遙信等“四遙”功能。軟件采用模塊化設計,每一個模塊相對獨立,完成某個特定功能,便于維護和添加新功能,并且調試靈活方便。文中給出了主程序及各個子程序的流程圖,其中子程序有數據采集子程序、FFT計算子程序、液晶顯示子程序、短路瞬時保護子程序、過載長延時保護子程序、接地故障保護子程序和短路短延時保護子程序等。并且設計中充分考慮了斷路器工作環境的惡劣性,分析了各種干擾的來源,并針對各種干擾采取了對應的軟件和硬件的抗干擾措施。最后,為了驗證全波傅氏算法能否滿足電網數據處理精度的要求,利用MATLAB搭建仿真平臺,對其進行了仿真。結果表明全波傅氏算法能達到系統的要求。
上傳時間: 2013-04-24
上傳用戶:BK094
溫室是設施農業的重要組成部分,國內外溫室種植業的實踐經驗表明,提高溫室的自動控制和管理水平可充分發揮溫室農業的高效性。隨著傳感技術,計算機技術及通訊技術的迅猛發展,現代化溫室信息自動采集及智能控制系統的開發已越來越引起人們的重視,并成為一個具有重要意義的研究方向。因此設計了基于PIC單片機的溫室自動控制系統,使其對溫室環境進行控制,為植物創造適宜的生長條件,從而使農作物獲得高產,提高農業生產的經濟效益。 文中論述了國內外溫室環境控制技術的發展及現狀,分析了溫室的內部機理,給出了所采用的溫室小氣候溫濕度模型;通過對溫室環境歷史數據的分析,得出了溫室溫度控制系統的近似數學模型。 系統采用模糊控制算法實現對溫濕度的控制。詳細研究了模糊控制的機理,建立了針對幾種執行機構的模糊控制規則表;在模糊推理中采用了T-S模型的推理方法,此方法確定的控制規則工程意義明確,易于調整。并以溫度控制系統為對象,使用MATLAB對模糊算法進行仿真;仿真結果表明,這種算法具有超調量小、穩定性強、適應性好等特點,能夠達到預期的控制效果,是一種較為理想的智能控制方案。 溫室自動控制系統的硬件部分由上位機和下位機及其外圍電路組成。上位機采用PC機,通過與下位機間的通信實現對溫室的統一管理;下位機及其外圍電路實現溫室環境參數的檢測、顯示和實時控制,微處理器采用的是PIC16F877A單片機。這種以單片機為核心的控制器還可以在不依賴上位機的情況下獨立實現參數的測控。 在軟件設計方面,將模糊控制算法引入其中,給出了主程序、模糊算法程序、通信程序等程序流程圖。使用MSComm控件實現上下位機間通信;并采用VB6.0對上位機界面進行了設計,使程序簡單、清晰、為用戶提供了直觀友好的管理平臺。整個系統軟硬件搭配合理,設計、開發、維護方便,具有較高的性價比。
上傳時間: 2013-07-21
上傳用戶:xz85592677
一本很好的匯編語言教程,跟大家一起分享 課程介紹 第1章 預備知識 1.1 匯編語言的由來及其特點 1 機器語言 2 匯編語言 3 匯編程序 4 匯編語言的主要特點 5 匯編語言的使用領域 1.2 數據的表示和類型 1 數值數據的表示 2 非數值數據的表示 3 基本的數據類型 1.3 習題 第2章 CPU資源和存儲器 2.1 寄存器組 1 寄存器組 2 通用寄存器的作用 3 專用寄存器的作用 2.2 存儲器的管理模式 1 16位微機的內存管理模式 2 32位微機的內存管理模式 2.3 習題 第3章 操作數的尋址方式 3.1 立即尋址方式 3.2 寄存器尋址方式 3.3 直接尋址方式 3.4 寄存器間接尋址方式 3.5 寄存器相對尋址方式 3.6 基址加變址尋址方式 3.7 相對基址加變址尋址方式 3.8 32位地址的尋址方式 3.9 操作數尋址方式的小結 3.10 習題 第4章 標識符和表達式 4.1 標識符 4.2 簡單內存變量的定義 1 內存變量定義的一般形式 2 字節變量 3 字變量 4 雙字變量 5 六字節變量 6 八字節變量 7 十字節變量 4.3 調整偏移量偽指令 1 偶對齊偽指令 2 對齊偽指令 3 調整偏移量偽指令 4 偏移量計數器的值 4.4 復合內存變量的定義 1 重復說明符 2 結構類型的定義 3 聯合類型的定義 4 記錄類型的定義 5 數據類型的自定義 4.5 標號 4.6 內存變量和標號的屬性 1 段屬性操作符 2 偏移量屬性操作符 3 類型屬性操作符 4 長度屬性操作符 5 容量屬性操作符 6 強制屬性操作符 7 存儲單元別名操作符 4.7 表達式 1 進制偽指令 2 數值表達式 3 地址表達式 4.8 符號定義語句 1 等價語句 2 等號語句 3 符號名定義語句 4.9 習題 第5章 微機CPU的指令系統 5.1 匯編語言指令格式 1 指令格式 2 了解指令的幾個方面 5.2 指令系統 1 數據傳送指令 2 標志位操作指令 3 算術運算指令 4 邏輯運算指令 5 移位操作指令 6 位操作指令 7 比較運算指令 8 循環指令 9 轉移指令 10 條件設置字節指令 11 字符串操作指令 12 ASCII-BCD碼調整指令 13 處理器指令 5.3 習題 第6章 程序的基本結構 6.1 程序的基本組成 1 段的定義 2 段寄存器的說明語句 3 堆棧段的說明 4 源程序的結構 6.2 程序的基本結構 1 順序結構 2 分支結構 3 循環結構 6.3 段的基本屬性 1 對齊類型 2 組合類型 3 類別 4 段組 6.4 簡化的段定義 1 存儲模型說明偽指令 2 簡化段定義偽指令 3 簡化段段名的引用 6.5 源程序的輔助說明偽指令 1 模塊名定義偽指令 2 頁面定義偽指令 3 標題定義偽指令 4 子標題定義偽指令 6.6 習題 第7章 子程序和庫 7.1 子程序的定義 7.2 子程序的調用和返回指令 1 調用指令 2 返回指令 7.3 子程序的參數傳遞 1 寄存器傳遞參數 2 存儲單元傳遞參數 3 堆棧傳遞參數 7.4 寄存器的保護與恢復 7.5 子程序的完全定義 1 子程序完全定義格式 2 子程序的位距 3 子程序的語言類型 4 子程序的可見性 5 子程序的起始和結束操作 6 寄存器的保護和恢復 7 子程序的參數傳遞 8 子程序的原型說明 9 子程序的調用偽指令 10 局部變量的定義 7.6 子程序庫 1 建立庫文件命令 2 建立庫文件舉例 3 庫文件的應用 4 庫文件的好處 7.7 習題 第8章 輸入輸出和中斷 8.1 輸入輸出的基本概念 1 I/O端口地址 2 I/O指令 8.2 中斷 1 中斷的基本概念 2 中斷指令 3 中斷返回指令 4 中斷和子程序 8.3 中斷的分類 1 鍵盤輸入的中斷功能 2 屏幕顯示的中斷功能 3 打印輸出的中斷功能 4 串行通信口的中斷功能 5 鼠標的中斷功能 6 目錄和文件的中斷功能 7 內存管理的中斷功能 8 讀取和設置中斷向量 8.4 習題 第9章 宏 9.1 宏的定義和引用 1 宏的定義 2 宏的引用 3 宏的參數傳遞方式 4 宏的嵌套定義 5 宏與子程序的區別 9.2 宏參數的特殊運算符 1 連接運算符 2 字符串整體傳遞運算符 3 字符轉義運算符 4 計算表達式運算符 9.3 與宏有關的偽指令 1 局部標號偽指令 2 取消宏定義偽指令 3 中止宏擴展偽指令 9.4 重復匯編偽指令 1 偽指令REPT 2 偽指令IRP 3 偽指令IRPC 9.5 條件匯編偽指令 1 條件匯編偽指令的功能 2 條件匯編偽指令的舉例 9.6 宏的擴充 1 宏定義形式 2 重復偽指令REPEAT 3 循環偽指令WHILE 4 循環偽指令FOR 5 循環偽指令FORC 6 轉移偽指令GOTO 7 宏擴充的舉例 8 系統定義的宏 9.7 習題 第10章 應用程序的設計 10.1 字符串的處理程序 10.2 數據的分類統計程序 10.3 數據轉換程序 10.4 文件操作程序 10.5 動態數據的編程 10.6 COM文件的編程 10.7 駐留程序 10.8 程序段前綴及其應用 1 程序段前綴的字段含義 2 程序段前綴的應用 10.9 習題 第11章 數值運算協處理器 11.1 協處理器的數據格式 1 有符號整數 2 BCD碼數據 3 浮點數 11.2 協處理器的結構 11.3 協處理器的指令系統 1 操作符的命名規則 2 數據傳送指令 3 數學運算指令 4 比較運算指令 5 超越函數運算指令 6 常數操作指令 7 協處理器控制指令 11.4 協處理器的編程舉例 11.5 習題 第12章 匯編語言和C語言 12.1 匯編語言的嵌入 12.2 C語言程序的匯編輸出 12.3 一個具體的例子 12.4 習題 附錄
上傳時間: 2013-07-05
上傳用戶:hw1688888
溫濕度是影響糧食儲藏的重要參數,兩者之間是相互關聯的,溫濕度控制不好必然引起糧食發熱和霉變,且極易產生連鎖反應,從而造成難以挽回的損失。溫濕度的控制直接影響到糧食存儲系統的性能。岡此,糧食溫濕度測控技術在農業上的應用是十分重要的。本文研究基于FPGA的糧倉溫濕度監制系統。 設計了基于FPGA的糧倉溫濕度監控系統,該系統主要由溫濕度傳感器、控制電路、單片機和上位機構成。單片機主要完成溫度數據的采集和上位機的通訊;控制電路基于FPGA進行設計,主要負責采集濕度信息,計算溫濕度偏差及其變化率,通過調用模糊控制算法對溫濕度進行模糊控制,單片機通過RS485總線和上位機進行串口通信,使上位機能夠實時記錄,顯示溫濕度變化值和控制過程曲線。該系統實現了糧倉內溫濕度的實時監測,使管理人員可以實時掌控糧倉內的溫濕度情況。 采用FPGA設計控制電路簡化了系統的組成和外圍數字電路,易于系統擴展和升級,內部集成了信號處理、控制、檢測電路,減少了系統的體積,縮短了開發周期,大大增強了系統的可靠性;配合功率驅動、電源等外圍電路,完成信號采集、處理和控制等功能,節省了開發成本,使糧倉溫濕度控制系統更加集成化。這也恰恰更加符合當今電子產品高精度,集成化的要求。 系統采用直接輸出數字量的DS1820溫度傳感器和濕度傳感器HS1101并將HS1101與555定時器組成振蕩電路,其輸出為頻率脈沖信號,與濕度值成線性關系,該頻率脈沖信號可直接送入FPGA進行計數,這樣溫濕度傳感器輸出的信號都沒有經過放大、A/D轉換,進一步減少了測量誤差??刂齐娐凡捎昧薞HDL硬件描述語言進行編寫。本裝置已作出實樣,通過了調試,已達到預期效果。
上傳時間: 2013-06-16
上傳用戶:731140412
當前,隨著電子技術的飛速發展,智能化系統中需要傳輸的數據量日益增大,要求數據傳送的速度也越來越快,傳統的數據傳輸方式已無法滿足目前的要求。在此前提下,采用高速數據傳輸技術成為必然,DMA(直接存儲器訪問)技術就是較理想的解決方案之一,能夠滿足信息處理實時性和準確性的要求。 本文以EDA工具、硬件描述語言和可編程邏輯器件(FPGA)為技術支撐,設計DMA控制器的總體結構。在通道檢測模塊中,解決了信號抗干擾和請求信號撤銷問題,并提出并行通道檢測算法;在優先級管理模塊中提出了動態優先級端口響應機制;在傳輸模塊中采用狀態機的設計思想設計多個通道的數據傳輸。通過各模塊問題的解決及新方法的采用,最終設計出基于FPGA的多通道DMA控制器的IP軟核。實驗仿真結果表明,本控制器傳輸速度較快,主頻達100MHz以上,且工作穩定。
上傳時間: 2013-05-16
上傳用戶:希醬大魔王
隨著交通工具的迅猛發展,智能交通系統(Intelligent TransportationSystems,簡稱ITS)在交通管理中受到廣泛的關注。而在ITS中,車牌識別(LicensePlate Recognition,簡稱LPR)是其核心技術。車牌識別系統主要由數據采集和車牌識別算法兩個部分組成。由于車牌清晰程度、攝像機性能、氣候條件等因素的影響,牌照中的字符可能出現不清楚、扭曲、缺損或污跡干擾,這都給識別造成一定難度。因此,在復雜背景中快速準確地進行車牌定位成為車牌識別系統的難點。 本文研究和設計了一種集圖象采集,圖象識別,圖象傳輸等于一體的實時嵌入式系統。該平臺包括硬件系統設計與應用程序開發兩個方面,充分利用TI公司的C6000系列DSP強大的并行運算能力、以及FPGA的靈活時序邏輯控制技術,從硬件方面實現系統的高速運行。 本文的主要工作有兩部分組成,具體如下: (1) 在硬件設計方面:實現由A/D、電源、FPGA、DSP以及SDRAM和FLASH所組成的車牌識別系統;設計并完成系統的原理圖和印制板圖;完成電路板調試,以及完成FPGA.在高速圖像采集中的veriIog應用程序開發。 (2) 在軟件開發方面:完成Philips公司的SAA7113H的配置代碼開發,以及DSP底層的部分驅動程序開發。 該系統能夠實現25幀每秒的數字視頻流圖像數據的輸出,并由FPGA負責完成一幅720×572數據量的圖像采集。DSP負責系統的嵌入式操作,包括系統的控制和車牌識別算法的實現。 目前,嵌入式車牌識別系統硬件平臺已經搭建成功,系統軟件代碼程序也已經開發完成。本系統能夠實現高速圖像采集、嵌入式操作與車牌識別算法、UART數據通信等功能,具有速度快、穩定性高、體積小、功耗低等特點,為車牌識別算法提供一個較好的驗證平臺。
上傳時間: 2013-04-24
上傳用戶:yangbo69