亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

輸出管

  • 高壓TSC無功補償技術的研究.rar

    高壓TSC(Thyristor Switch Capacitor)裝置是指額定工作電壓為6kV-35kV晶閘管投切電容器補償裝置,是一種典型靜止無功補償器,其對增強系統穩定性、提高系統運行經濟性,保證電壓質量及改善電能質量都能發揮良好的作用。目前國內對高壓TSC裝置研制與生產還處于起步階段,加速高壓TSC裝置的國產化,對在我國電力系統中早日推廣與應用高壓TSC裝置具有重大意義。 首先在無功功率的測量上,如何在有諧波干擾等復雜環境下準確檢測無功功率,本文采用了基于快速傅立葉變換的方法,可以很好的完成無功功率的采集。在主電路結構上,晶閘管開關閥是高壓TSC裝置的關鍵構成部件,高壓TSC裝置要求晶閘管開關應具有良好的電氣性能,要求晶閘管開關應是有效和可靠的。本文通過晶閘管特性和串聯技術的研究,給出了晶閘管串聯開關的靜態均壓和動態均壓方法,設計出合理使用的電路結構。通過仿真分析,驗證了均壓電路的效果。 電容器無涌流投入技術也是TSC主要研究點,由于在高壓系統中器件兩端承受的電壓較高,低壓TSC系統中常用的過零固態繼電器或集成過零觸發芯片滿足不了耐壓的需要,本文設計了專門的過零檢測及觸發電路,在器件兩端電壓過零時觸發,避免了由于電容器殘壓過高而造成的巨大沖擊電流,從而在硬件電路上實現電容器組的無過渡過程投切,電路簡單可靠。同時,在控制策略上將幾種投切判據進行了比較,采用了電壓無功復合投切判據,以無功功率作為主判據,電壓作為輔助判據,有效地克服了僅以功率因數作為投切判據的控制方式中的輕載時容易產生投切振蕩而重載時容易出現補償不充分的缺點。

    標簽: TSC 無功補償技術

    上傳時間: 2013-05-24

    上傳用戶:6546544

  • 晶閘管投切電容器TSC中功率單元的研究.rar

    隨著低壓供電系統中感性負荷越來越多,電網對無功電流的需求量急劇增加,為了提高系統供電質量和供電效率,必須對電網進行無功補償。晶閘管投切電容器(TSC)一種簡單易行的補償措施,并已得到廣泛應用。但是長期以來無功補償裝置中的電容器投切開關存在功能單一、使用壽命短、開關沖擊大等不足,這些不足嚴重制約了補償裝置的發展。因此開發大容量快速的集多種功能于一體的電子開關功率單元將是晶閘管投切電容器(TSC)技術中長期研究的主要內容,具有很高的實用價值。 首先,本文回顧了投切開關的發展歷史,并指出它們存在的優點和弊端。闡述了晶閘管投切電容器(TSC)的基本工作原理及主電路的組成和實現手段。 其次,提出功率單元的概念,并介紹了它的組成、功能和作用、對功率單元各個組成部分進行研究,主要包括根據系統電壓和電流選擇晶閘管型號、根據TSC無過渡過程原理的分析來設計過零觸發模塊、利用補償電容上的工作電壓波形設計多功能卡上的工作指示電路、故障檢測電路,根據TSC的保護特點將溫度開關串入到控制信號和冷卻風扇電路,在溫度過高時起到對功率單元的保護作用。然后在理論及設計參數的基礎上制造功率單元。在已有的TSC補償裝置上對功率單元的性能進行實驗,實驗結果表明,論文所設計功率單元能很好的實現投切電容器的作用,還實現各種保護和顯示功能,提高效率和補償效果。 最后,系統地闡述了功率單元作為集成化開關模塊在無功補償領域的優越性,并指出設計中需要完善的地方。

    標簽: TSC 晶閘管 功率

    上傳時間: 2013-07-19

    上傳用戶:許小華

  • 蓄電池組分布式單體充電器研究.rar

    蓄電池組已越來越廣泛地應用于交通運輸、電力、通信等諸多領域和部門,其壽命直接關系到能源的有效利用以及相應系統的整體壽命、可靠性和成本。本課題從提高電池壽命的角度研究串聯蓄電池組的充電問題,基于前人使用磁放大器作后級調整的基礎上,提出了一種新穎的基于開關管MOSFET后級調整和高頻母線的蓄電池組分布式單體充電方法。所有二次側電路通過高頻母線的形式共用一個一次側電路;在兼顧效率、體積和成本的前提下有效的解決了串聯蓄電池組的充電不均衡問題。 論文對采用雙管正激拓撲的高頻母線產生電路的設計給出了說明;同時也介紹了幾種后級調整方法及各自優缺點。針對后級調整中的同步問題,提出了幾種產生同步鋸齒波的解決方案。最后利用同步脈沖產生電路,采用最常見的UC3843芯片,產生穩定可靠的同步鋸齒波,實現后級調整開關動作與母線方波電壓的同步。并且針對多路后級調整場合下,采取措施減小了母線電壓毛刺,同時也改善了電流采樣波形。 論文設計了一套單體3500mAh、3.7V鋰離子電池組的單體獨立充電器,以雙管正激電路為原邊電路作為主模塊,次級是以MOSFET作后級調整電路實現充電功能作為充電電路模塊。試驗中采用了四個充電電路模塊,同時對四個鋰離子電池單體分別獨立充電。充電電路模塊中,通過控制MOFET開關,可實現鋰電池的恒流、恒壓充電和滿充切斷,充電電壓和充電電流可精確控制在1%以內。該充電電路并能顯示電池充電狀態,并在單體充電電路間傳遞充電狀態信號,最后反饋給母線電路以控制母線電壓輸出的開通與關斷。特別指出的是該電路的過放電檢測功能,是直接利用電池自身電壓來檢測得出電池自身是否處于過放電狀態判定信號,并在充電模塊間傳遞,最后得出蓄電池組過放電判定信號。整機有較低的待機功耗,并均使用了低成本器件,進一步降低了成本。 論文給出了詳細的設計過程,最后通過實驗將該方案與串聯充電方案比較,驗證了該充電方案的可靠性與優越性。

    標簽: 蓄電池組 分布式 充電器

    上傳時間: 2013-04-24

    上傳用戶:木末花開

  • 基于BOOST變換器的高功率因數軟開關電源的研究.rar

    隨著電力電子技術的發展,對大功率、高性能的開關電源要求也越來越高。功率因數校正(PFC)技術是當前電力電子技術研究的熱點問題。大多數電力電子裝置通過整流器與電網接口,而傳統的二極管或晶閘管整流裝置會產生大量的諧波電流,對電網造成污染。許多國家和國際組織相繼制定了一系列限制用電設備諧波的標準。有源功率因數校正技術能夠有效的消除整流裝置的諧波,因此具有廣泛的應用前景。 本文首先分析了開關電源的發展現狀及發展要求,詳細地闡述了開關電源的基本構成和基本組態。然后研究了ZVT-Boost軟開關PFC電路的基本結構、基本工作原理及軟開關實現原理,在此基礎上確定了主電路結構,并制定了控制系統方案。 鑒于功率要求,本文采用兩級PFC電路。因此對常見的DC-DC變換器的拓撲結構、原理特性進行分析。并針對各自的變換器建立了簡化模型,基于所建立的模型分析了變換器的特性,列出各變換器的優缺點及在設計開關電源時的選用原則。最后,對所設計的系統進行了仿真分析。 本文根據用戶的要求研究設計了一種大功率高性能開關電源。該開關電源分為前級和后級,前級為采用BOOST結構的單相有源功率因數校正電路,后級為采用移相控制軟開關技術的全橋變換器。最后研制出了實驗樣機,并給出了實驗樣機的功率因數校正電路和移相全橋軟開關變換電路的實驗波形。

    標簽: BOOST 變換器 高功率因數

    上傳時間: 2013-04-24

    上傳用戶:朗朗乾坤

  • 三相PWM整流系統研究.rar

    使用二極管和晶閘管實現的不控和可控整流器,電流波形畸變給電網注入大量諧波和無功功率,造成嚴重的電網污染。隨著電力電子技術的發展,人們開始研究PWM整流技術。電壓型PWM整流器具有交流側電流低諧波、高功率因數、直流電壓輸出穩定等諸多優點,因此,成為當前電力電子領域研究的熱點課題之一。由于PWM整流器具有以上優點,在電力系統有源濾波、無功補償、潮流控制、太陽能發電以及交直流傳動系統等領域,具有越來越廣闊的應用前景。本論文對三相PWM整流器進行了研究,主要完成以下工作: 首先,對PWM整流器的工作原理做了介紹,給出了三相PWM整流器的拓撲結構,分析了PWM整流器的換流過程,給出了PWM整流器的數學模型,對交流側電感和直流側電容進行了設計。 其次,對電流滯環控制、電流PI控制、空間電壓矢量控制三種控制方法分別進行了介紹、模型搭建和仿真分析。在直流電壓的控制中加入分段PI控制,使超調量和穩態誤差限制在很小的范圍以內。在起動過程中串接入限流電阻,使起動電流限定允許范圍以內。 最后,在進行了以上三種控制方式仿真后,針對電壓空間矢量控制存在的電流誤差問題,采用電流超前給定策略和基于旋轉坐標系的空間電壓矢量控制策略解決了電流誤差問題。 仿真結果表明,論文所設計的三相電壓型PWM整流器實現了高功率因數運行,實現了直流電壓的穩定控制,解決了傳統意義上的整流電路中存在諧波含量大、功率因數低等問題,具有良好的工程實用價值。

    標簽: PWM 三相 整流

    上傳時間: 2013-06-16

    上傳用戶:胡佳明胡佳明

  • 靜電除塵器諧振軟開關高頻高壓電源的設計與實現.rar

    靜電除塵器是環保行業的重要設備,在工業粉塵的回收處理方面有著非常重要的應用。課題的主要內容是研制用于靜電除塵的高頻大功率高壓直流電源,滿足國內市場的需要。本文從實際應用的角度出發,對該高壓直流電源進行研究并給出了主要研制過程。 第一章首先介紹了靜電除塵器的工作原理和除塵器的電特性,然后介紹了幾種當前工業界常用的除塵電源的供電方式,并指出了靜電除塵電源的發展方向是高頻逆變化。在分析了高頻化靜電除塵電源在國內外的研究現狀和發展趨勢后,結合課題的要求,提出了本文需要解決的問題。 第二章首先對逆變電路的功率變換技術進行了分析。接著分析了除塵電源采用PWM硬開關方式的電路特性,并利用PSpice軟件進行了仿真分析,估算出了采用這種方式開關管的損耗。然后重點分析了采用串聯負載串聯諧振和LCC串并聯負載串聯諧振這兩種諧振軟開關工作方式時的電路特性,推導了電路所滿足的條件。在利用PSpice軟件仿真分析的基礎上估算出了開關管的損耗。最后通過電路損耗和可行性的比較,選擇LCC串并聯負載串聯諧振電流斷續的軟開關工作方式應用于大功率高頻高壓電源。 第三章首先確定了三相晶閘管可控整流,電壓型全橋IGBT逆變,高頻變壓器升壓和高壓硅堆全橋整流的主電路拓撲結構。然后給出了高壓直流電源的整流電路、逆變電路、主功率回路以及高頻升壓變壓器的設計過程。整流電路的設計包括晶閘管的選取以及交流電抗器和直流母線濾波電容的設計;逆變電路選用IGBT并聯來實現開關管,并詳細分析了IGBT驅動器的選擇以及在并聯形式下的應用;主功率回路的設計主要是包括迭層母線板的設計。 第四章首先簡單介紹了高壓直流電源在靜電除塵應用中的控制策略。然后詳細分析了各部分保護電路的工作原理。 第五章給出了樣機的實驗結果和重要波形,驗證了設計的可行性。

    標簽: 靜電除塵器 諧振 軟開關

    上傳時間: 2013-04-24

    上傳用戶:碉堡1234

  • 三相橋式整流的功率因數校正技術的研究.rar

    隨著電力電子技術的發展,交流電源系統的電能質量問題受到越來越多的關注。傳統的整流環節廣泛采用二極管不控整流和晶閘管相控整流電路,向電網注入了大量的諧波及無功,造成了嚴重的污染。提高電網側功率因數以及降低輸入電流諧波成為一個研究熱點。功率因數校正技術是減小用電設備對電網造成的諧波污染,提高功率因數的一項有力措施。本文所做的主要工作包括以下幾部分: 1.分析了單位功率因數三相橋式整流的工作原理,這種整流拓撲從工作原理上可以分成兩部分:功率因數補償網絡和常規整流網絡。在此基礎上,為整流電路建立了精確的數學模型。 2.這種單位功率因數三相橋式整流的輸入電感是在額定負載下計算出的,當負載發生變化時,其功率因數會降低。針對這種情況,提出了一種新的控制方法。常規整流網絡向電網注入的諧波可以由功率因數補償網絡進行補償,所以輸入功率因數相應提高。負載消耗的有功由電網提供,補償網絡既不消耗有功也不提供任何有功。根據功率平衡理論,可以確定參考補償電流。雙向開關的導通和關斷由滯環電流控制確定。在這一方法的控制下,雙向開關工作在高頻下,因此輸入電感值相應降低。仿真和實驗結果都表明:新的控制方法下,負載變化時,輸入電流仍接近于正弦,功率因數接近1。 3.根據IEEE-519標準對諧波電流畸變率的要求,為單位功率因數三相橋式整流提出了另一種控制方法。該方法綜合考慮單次諧波電流畸變率、總諧波畸變率、功率因數、有功消耗等性能指標,并進行優化,推導出最優電流補償增益和相移。將三相負載電流通過具有最優電流補償增益和相移的電流補償濾波器,得到補償后期望的電網電流,驅動雙向開關導通和關斷。仿真和實驗都收到了滿意的效果,使這一整流橋可以工作在較寬的負載范圍內。 4.單位功率因數三相橋式整流中直流側電容電壓隨負載的波動而波動,為提高其動、靜態性能,將簡單自適應控制應用到了直流側電容電壓的控制中,并提出利用改進的二次型性能指標修改自適應參數的方法,可以在實現對參考模型跟蹤的同時又不使控制增量過大,與常規的PI型簡單自適應控制相比在適應律的計算中引入了控制量的增量和狀態誤差在k及k+1時刻的采樣值。利用該方法為直流側電壓設計了控制器,并進行了仿真與實驗研究,結果表明與PI型適應律相比,新的控制器能提高系統的動態響應性能,負載變化時系統的魯棒性更強。

    標簽: 三相橋式 整流 功率因數

    上傳時間: 2013-06-15

    上傳用戶:WS Rye

  • 模塊化UPS并聯及控制技術研究.rar

    隨著用戶對供電質量要求的進一步提高,模塊化UPS 并聯系統獲得了越來越廣泛的應用。本文以模塊化UPS為研究對象,根據電路結構,將其分為直流部分模塊化和交流部分模塊化分別進行討論。整流環節對Boost-PFC 電路進行并聯控制,實現直流部分的模塊化;逆變環節在瞬時電壓PID 控制的基礎上,引入了瞬時均流的并聯控制策略,實現交流部分的模塊化。 介紹了有源功率因數校正技術的基本原理和控制思路,分析了單管雙Boost-PFC電路的工作過程,并將其簡化等效成常規的Boost 電路進行分析和控制。根據控制系統的結構,分別對電流控制環和電壓控制環進行了分析,得出了電感電流主要受電流指令的影響,而輸入輸出電壓差的影響則相對比較小;輸出電壓主要受參考給定指令電壓、緩啟給定指令電壓以及輸出電流等因素的影響。根據電流環和電壓環的解析表達式,給出了并聯控制的方法及原理。 對單相電路、三相電路以及多模塊并聯電路分別進行了仿真驗證,對多模塊的并聯系統進行了實驗驗證。建立了單相逆變器的數學模型,并加入PID 控制器,得到了輸出電壓的解析表達式,得出逆變器輸出電壓與參考給定電壓和輸出電流有關。利用極點配置的方法得到了模擬域PID 控制器參數的計算公式,并采用后向差分法,將其轉換到數字域,得到了數字PID 控制器參數與模擬域參數的換算關系。通過實驗測試和曲線擬合的辦法,得到了實際逆變器的電路參數。通過對所設計的數字PID 控制器進行仿真和實驗,驗證了理論分析和計算。建立了PID 電壓閉環的多逆變器并聯系統數學模型,分析得出并聯系統的輸出電壓主要由系統中各模塊的平均給定電壓決定,同時也受較高次的輸出諧波電流影響,受輸出基波電流影響相對較小;環流主要受模塊的給定電壓與系統平均給定電壓的偏差影響。針對環流產生的原因,提出了一種瞬時均流控制策略來減小系統環流對給定電壓偏差的增益,從而達到瞬時均流的目的。 對兩逆變模塊并聯的系統在各種工況下進行了仿真和實驗,驗證了理論分析的正確性和這種瞬時均流控制策略的可行性。

    標簽: UPS 模塊化 并聯

    上傳時間: 2013-04-24

    上傳用戶:ggwz258

  • 開關電源功率因數校正的研究.rar

    開關電源以其效率高、功率密度高在電源領域中占主導地位。開關電源多數是通過整流器與電力網相接的,經典的整流器是由二極管或晶閘管組成的一個非線性電路,其輸入電流波形呈脈沖狀,交流網側功率因數很低,在電網中會產生大量的電流諧波和無功功率而污染電網,成為電力公害。開關電源己成為電網最主要的諧波源之一。因此,進行網側功率因數校正成為目前研究的熱點之一。目前研究和應用得較多的高功率因數變換器要用兩級:DC/DC開關變換器串聯。這種電路的最大缺點是需要多個元器件、成本高、效率低,尤其在中小功率場合應用時很不經濟。現在國內外正在開發研究單級功率因數校正電路,具有很高的功率因數且成本低。因而研究單級功率因數校正及變換技術對抑制諧波污染、開創綠色電源以及實現當今開關電源的小型輕量化具有重大意義。 近年來隨著電子信息產業的高速發展,人們對開關電源的需求與日俱增,開關電源。PFC(Power Factor Correction)集成控制器己成為發展前景十分誘人的朝陽產業。隨著開關電源的廣泛應用,開關電源PFC集成控制器顯示出了強大的生命力,它具有集成度高、性價比高、外圍電路簡單和性能指標優良等優點,現已成為開發各類電源及開關電源模塊的優選集成電路。 本文首先闡述了電網污染的危害、功率因數的定義,總結了各種功率因數校正變換器的典型拓撲,對各種拓撲的特點、應用場合及控制方法作了比較分析,著重詳細介紹了反激拓撲的功率因數校正變換器的應用及優缺點。最后采用功率因數校正芯片SA7527進行了一個小功率電源的功率因數校正的設計,用實驗驗證了該設計的可行性,結果顯示功率因數能達到0.95左右,達到了較好的功率因數校正效果。

    標簽: 開關電源 功率因數校正

    上傳時間: 2013-06-30

    上傳用戶:czh415

  • 基于PIC的智能異步電機軟起動器的研究.rar

    為了減小異步電機在起動過程中過高電流對電網的沖擊,消除傳統降壓起動對電器和機械設備的不利影響,提高電機的起動特性,本文基于電力電子技術對異步電機的軟起動進行了較為深刻的研究。 本文介紹并設計了一種基于PIC18F4550的新型的軟起動器。在功能上,除了具有一般的電壓斜坡軟起動和電流限流軟起動功能,還增加了專門針對泵類負載的轉矩閉環泵控軟起動模式。這種起動方式有效的降低了水泵起動和停止時造成的水錘,并減輕了管路系統的振蕩。同時,針對異步電動機軟起動過程中出現的電流、電磁轉矩以及轉速振蕩問題,分析了引起振蕩的影響因素及其產生原因,采用以電流關斷時刻為晶閘管觸發基準來抑制振蕩問題。 文章首先分析研究了異步電機的基本結構和工作原理,確定了軟起動器所采用的基本原理和控制方法。分析得出為改善泵類負載起動性能所采用的轉矩閉環泵控制策略以及為減小振蕩所采用的關斷角控制方法的可行性。 其次,本課題對傳統的軟起動器的改進進行了嘗試。采用Microchip公司的PIC18F4550芯片為控制核心。在此基礎上,詳細介紹了交流采樣電路、同步觸發電路以及通迅接口電路等硬件電路。軟件方面采用C語言和匯編語言混合編程實現模塊化程序的設計,在文中較為詳細地介紹了控制系統各部分軟件的設計思想和實現,其中包括主程序流程、各種起動方式的控制程序等。 在文章最后給出了基于MATLAB搭建的軟起動系統的仿真模型,仿真結果表明這種帶泵控制功能的軟起動器可以有效的減小電機起動過程中過高電流對電網的沖擊,優化了電機的起動性能。

    標簽: PIC 異步電機 軟起動器

    上傳時間: 2013-06-13

    上傳用戶:wang5829

亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲日本黄色| 中国成人亚色综合网站| 日韩一级精品视频在线观看| 免费在线看一区| 91久久线看在观草草青青| 欧美乱妇高清无乱码| 99在线精品视频| 国产视频综合在线| 免费成人高清视频| 一本久道综合久久精品| 国产伦精品一区二区三区照片91 | 欧美日韩一区二区三区在线看 | 国产日韩欧美亚洲一区| 久久国产主播精品| 中国av一区| 99国产精品99久久久久久粉嫩 | 久久欧美中文字幕| 亚洲精品欧洲| 亚洲国产综合在线看不卡| 国产日韩欧美成人| 国产精品大片wwwwww| 欧美精品在线播放| 久久亚洲欧美| 美女成人午夜| 猛男gaygay欧美视频| 欧美在线|欧美| 欧美一区二区三区免费视频| 亚洲乱码一区二区| 亚洲精品乱码| 中国女人久久久| 亚洲视频一区在线| 亚洲影院免费观看| 午夜日韩视频| 久久精品免费电影| 鲁鲁狠狠狠7777一区二区| 欧美www视频在线观看| 免费在线国产精品| 欧美人体xx| 欧美调教vk| 国产欧美日韩在线播放| 怡红院av一区二区三区| 亚洲黄色三级| 一区二区三区视频免费在线观看| 亚洲综合色婷婷| 久久久精品国产一区二区三区 | 免费国产一区二区| 欧美视频日韩| 精品动漫一区二区| 亚洲系列中文字幕| 老司机成人网| 国产欧美精品在线播放| 99热在线精品观看| 久久欧美中文字幕| 欧美不卡一卡二卡免费版| 国产一区二区三区在线观看网站| 国产精品久久久久91| 国产欧美日韩高清| 亚洲精品少妇| 亚洲欧美色一区| 另类专区欧美制服同性| 欧美性感一类影片在线播放| 午夜精品久久久久久久久久久| 小黄鸭视频精品导航| 欧美日韩在线三区| 亚洲激情视频在线| 免费美女久久99| 精品成人一区二区三区四区| 欧美一区二区免费| 欧美午夜不卡在线观看免费 | 欧美精品色综合| 欧美日韩一区二区欧美激情 | 亚洲视频免费看| 欧美激情女人20p| 91久久精品www人人做人人爽| 久久精品国产成人| 国产精品一区二区久久久| 欧美一区在线看| 国产亚洲精品成人av久久ww| 欧美在线视频一区| 国产精品久久久久影院色老大 | 久久av二区| 国产一区二区黄| 噜噜噜噜噜久久久久久91| 亚洲国产欧美一区二区三区久久 | 日韩视频在线观看免费| 欧美视频精品在线| 亚洲美女啪啪| 国产精品嫩草99a| 久久黄色级2电影| 亚洲精品影视| 国产一区二区三区高清| 国产精品久久久久久久久久ktv| 亚洲国产视频一区| 欧美欧美天天天天操| 在线亚洲国产精品网站| 国产一级一区二区| 欧美精品免费观看二区| 欧美影视一区| 国产亚洲欧洲| 欧美猛交免费看| 久久久久久**毛片大全| 一区二区三区精品视频在线观看 | 久久亚洲高清| 欧美在线视频在线播放完整版免费观看 | 亚洲免费精彩视频| 国产一区二区三区四区hd| 欧美日韩精品综合在线| 久久精品水蜜桃av综合天堂| 亚洲视频免费看| 妖精成人www高清在线观看| 亚洲国产视频一区| 尤物九九久久国产精品的分类| 欧美日韩综合另类| 欧美性淫爽ww久久久久无| 欧美另类在线观看| 欧美精品福利视频| 欧美噜噜久久久xxx| 欧美另类在线观看| 欧美精品色网| 欧美视频一区二区三区在线观看| 免费在线成人| 欧美成人午夜激情视频| 免费久久久一本精品久久区| 免费观看一级特黄欧美大片| 欧美1区视频| 欧美三级电影精品| 国产啪精品视频| 狠狠色狠色综合曰曰| 在线电影国产精品| 亚洲人人精品| 亚洲欧美成人网| 久久久国产精彩视频美女艺术照福利| 久久精品青青大伊人av| 麻豆乱码国产一区二区三区| 欧美电影在线观看| 国产精品三级久久久久久电影| 国产欧美日韩免费| 尤物yw午夜国产精品视频明星 | 亚洲影视综合| 久久国产毛片| 欧美午夜女人视频在线| 国产一区二区三区在线观看精品| 一区二区在线视频播放| 亚洲图片欧美一区| 免费成人在线视频网站| 国产精品网站在线观看| 亚洲激情第一页| 久久国产精品久久久久久久久久 | 国产一区成人| 亚洲美女视频在线免费观看| 久久精品国产综合精品| 欧美日韩亚洲一区二区三区在线观看| 国产精品一二| 中文在线一区| 欧美aa国产视频| 精品av久久707| 欧美亚洲综合在线| 国产精品乱码久久久久久| 日韩视频一区二区| 欧美精品黄色| 一区二区精品在线| 国产精品chinese| 亚洲欧美成人精品| 国产日韩综合| 狼狼综合久久久久综合网| 韩国成人福利片在线播放| 久久精品一区二区三区不卡| 黑人操亚洲美女惩罚| 免费视频最近日韩| 亚洲成色www8888| 免费短视频成人日韩| 99成人在线| 国产精品第一区| 久久精品91久久久久久再现| 国产在线视频欧美| 欧美高清在线| 亚洲欧美日韩精品久久久| 国内外成人免费激情在线视频| 久久婷婷综合激情| 亚洲精品欧美日韩| 国产欧美日韩在线播放| 毛片基地黄久久久久久天堂| 在线一区欧美| 国产一区二区三区网站| 欧美福利在线| 久久精品国产77777蜜臀| 日韩亚洲国产精品| 国产精品免费小视频| 欧美成人精品一区二区| 欧美一区二区在线免费观看| 亚洲精品婷婷| 在线成人性视频| 国产日韩欧美亚洲一区| 欧美精品在线播放| 久久久久免费视频| 午夜在线电影亚洲一区| 亚洲精品日韩欧美| 怡红院精品视频| 韩日视频一区| 国产乱人伦精品一区二区|