摘要:建立了數(shù)字控制DC/DC開關(guān)電源閉環(huán)系統(tǒng)的s域小信號模型,采用數(shù)字重設(shè)計(jì)法針對給定的系統(tǒng)季數(shù)設(shè)計(jì)了數(shù)字補(bǔ)償器。應(yīng)用SISO Design Tool仿真平臺,在伯德圖分析和根軌連法的基礎(chǔ)上設(shè)計(jì)了連續(xù)城的模擬補(bǔ)償器,并進(jìn)行了離散化處理。在建立系統(tǒng)s城模型時(shí)引入了模數(shù)轉(zhuǎn)換器和數(shù)字脈寬調(diào)制發(fā)生器產(chǎn)生的延遲效應(yīng),使補(bǔ)償器的設(shè)計(jì)考慮了采樣速率對系統(tǒng)的影響,改善了傳統(tǒng)離散設(shè)計(jì)的誤蓋?;诮套种卦O(shè)計(jì)法構(gòu)建的數(shù)字補(bǔ)償器實(shí)現(xiàn)了對脈寬調(diào)制信號的可編程精確控制,保證了變換器閉環(huán)工作良好的動態(tài)特性。仿真實(shí)驗(yàn)結(jié)果驗(yàn)證了所設(shè)計(jì)的數(shù)字補(bǔ)償器的性能。關(guān)鍵詞:數(shù)字控制系統(tǒng);模數(shù)轉(zhuǎn)換;數(shù)字重設(shè)計(jì)法;數(shù)字補(bǔ)償器;數(shù)字脈寬調(diào)制1引言傳統(tǒng)的開關(guān)電源采用模擬控制技術(shù),使用比較器、誤差放大器和模擬電源管理芯片等元器件來調(diào)整電源輸出電壓,存在著控制電路復(fù)雜、元器件數(shù)量多以及控制電路成型后很難修改等缺點(diǎn),不利于開關(guān)電源的集成化和小型化。近年來隨著微電子學(xué)的迅速發(fā)展,電源的控制也已經(jīng)由模擬控制、模數(shù)混合控制,進(jìn)入到數(shù)字控制階段”,具有可編程性、設(shè)計(jì)可延續(xù)性、元件數(shù)量減少、先進(jìn)的校正能力等優(yōu)點(diǎn)。以往由于DSP等控制芯片的高成本,數(shù)字控制多用于大功率AC/DC變換器、PFC功率因數(shù)校正等場合”,而對于DC/DC高頻開關(guān)電源只是實(shí)現(xiàn)了一些數(shù)字化的簡單應(yīng)用,如采用MCU提供保護(hù)、監(jiān)控和通信功能。隨著數(shù)字控制芯片成本的降低,數(shù)字控制也逐漸應(yīng)用于DC/DC直流變換器,直接參與電源的反饋回路控制,實(shí)現(xiàn)了信號采樣補(bǔ)償和PWM調(diào)節(jié)的數(shù)字化。數(shù)字PID補(bǔ)償器的設(shè)計(jì)非常關(guān)鍵,直接決定了電源的輸出精度、動態(tài)響應(yīng)等指標(biāo)。近年來對DC/DC開關(guān)電源的數(shù)字補(bǔ)償器的建模研究已有很多論述],主要基于數(shù)字重設(shè)計(jì)法和直接數(shù)字設(shè)計(jì)法。數(shù)字重設(shè)計(jì)是在傳統(tǒng)模擬電源研究方法的基礎(chǔ)上,首先將數(shù)字電源簡化為一個(gè)連續(xù)的線性系統(tǒng),忽略了采樣保持器效應(yīng)后設(shè)計(jì)模擬補(bǔ)償器,然后采用雙線性近似(Tustin)、匹配零極點(diǎn)(MPZ)等方法對其離散化得到數(shù)字補(bǔ)償器。直接數(shù)字設(shè)計(jì)是直接建立零階保持器和被控對象的離散模型,再構(gòu)建包括離散補(bǔ)償器的反饋系統(tǒng)。數(shù)字重設(shè)計(jì)和直接數(shù)字設(shè)計(jì)法在高采樣速率下設(shè)計(jì)的數(shù)字補(bǔ)償器性能差別不是很大,只是在低采樣速率下直接數(shù)字設(shè)計(jì)更加精確。
標(biāo)簽: 開關(guān)電源 環(huán)路補(bǔ)償
上傳時(shí)間: 2022-06-18
上傳用戶:zhanglei193
超聲波是一種能量存在的方式,超聲波通過高頻的振動作用于水介質(zhì),從而產(chǎn)生超聲空化效應(yīng),這種空化效應(yīng)已經(jīng)在超聲波清洗中得到應(yīng)用,或者超聲波作用于傳聲媒介當(dāng)中,能夠引起媒介之間發(fā)生不同的效應(yīng),已經(jīng)在基礎(chǔ)學(xué)科研究和工程應(yīng)用開發(fā)都表示出非常廣闊的應(yīng)用前景[12]。按照超聲波研究內(nèi)容上劃分,可以分為功率超聲和檢測超聲兩大領(lǐng)域Bl]。檢測超聲是工業(yè)及醫(yī)學(xué)檢查的一種方法之一,也被認(rèn)為是弱超聲的“被動應(yīng)用”,功率超聲主要是通過超聲接觸對接觸面進(jìn)行高頻的振動摩擦,以改變介質(zhì)的一些特性,所以功率超聲也被稱為“主動應(yīng)用”[]。本課題主要是針對功率超聲波換能器進(jìn)行研究。超聲波的產(chǎn)生主要依靠的是超聲波換能器。超聲波換能器是一種能夠進(jìn)行機(jī)、電能量或者聲、電能量轉(zhuǎn)換的器件。對于功率超聲換能器而言,換能器通過壓電材料的壓電效應(yīng)將輸入的高頻電能轉(zhuǎn)換成高頻振動的機(jī)械能量。換能器的種類有很多,應(yīng)用的領(lǐng)域也不相同,如磁致伸縮超聲換能器間,壓電陶瓷換能器等等。目前研究最為廣泛的是壓電陶瓷換能器,壓電陶瓷換能器是依靠壓電陶瓷的壓電效應(yīng)及逆壓電效應(yīng)來實(shí)現(xiàn)能量的轉(zhuǎn)換。壓電陶瓷的壓電效應(yīng)是由它的內(nèi)部結(jié)構(gòu)引起的,壓電材料主要有鈦酸鋇、錯(cuò)鈦酸鉛、偏銳酸鉛、銳酸鉀鈉、鈦酸鉛等]。這些電介質(zhì)在某一恰當(dāng)?shù)姆较蚴┘右欢ǖ耐饬r(shí),會引起內(nèi)部電極分布狀態(tài)發(fā)生改變,在介質(zhì)的相對表面上會出現(xiàn)和外力成正比且極性相反的帶電電荷,這種由外力引起的電介質(zhì)的現(xiàn)象叫做壓電效應(yīng)則。相反,若在電介質(zhì)上某一恰當(dāng)?shù)姆较蚣由弦欢◤?qiáng)度的外電場時(shí),會引起電介質(zhì)內(nèi)部電極分布發(fā)生相應(yīng)的變化,從而產(chǎn)生和外電場強(qiáng)度成正比的應(yīng)變效應(yīng),這種由于外電場引起的電介質(zhì)的應(yīng)變現(xiàn)象叫做逆壓電效應(yīng)]。功率超聲換能是超聲學(xué)領(lǐng)域中一個(gè)重要的分支學(xué)科。本課題主要針對壓電陶瓷式功率超聲波換能器展開研究。20世紀(jì)初期超聲波技術(shù)開始出現(xiàn),而我國50年代才開始進(jìn)行大功率超聲的研究[]。隨著科學(xué)技術(shù)的發(fā)展特別是電子技術(shù)的發(fā)展,如單片機(jī)、DSP、FPFA等微處理器得快速發(fā)展,微處理器功能越來越強(qiáng)大,運(yùn)算速度越來也快,以及IGBT、MOSFET等功率器件的快速發(fā)展,功率器件的容量不斷的增加,響應(yīng)速度不斷的提高。對超聲波發(fā)生器的要求也越來越高,體積越來越小,功能越來越強(qiáng)大,越來越智能,可靠性進(jìn)一步提高。
標(biāo)簽: 超聲波換能器
上傳時(shí)間: 2022-06-18
上傳用戶:shjgzh
系統(tǒng)原理說明:結(jié)構(gòu)上,該逆變器采用模塊化的設(shè)計(jì)思想,分別為升壓模塊、逆變模塊、低通濾波器等。通過升壓模塊M1進(jìn)行DC/DC變化,將輸入110VDC電壓轉(zhuǎn)換350VDC,然后通過逆變模塊M2進(jìn)行DC/AC變換,輸出三相200VAC的SPWM波,最后經(jīng)過輸出濾波器濾波后輸出三相200V正弦波。逆變器僅在緊急情況下使用,系統(tǒng)上采用了簡潔、可靠的設(shè)計(jì)思想,對外接口只有電壓110V輸入一組,3相交流輸出一組,啟動信號一組和故障指示一組,見圖2:110V+為110V電源輸入正極;110VG為110V電源輸入負(fù)極;START1與START2為緊急逆變器啟動控制;FAULT1與FAULT2為緊急逆變器故障報(bào)警信號端口;U、V、W為逆變器的3相200V輸出端。逆變器長期處于冷待機(jī)狀態(tài),當(dāng)接收到啟動信號之后,緊急逆變器開始工作。當(dāng)空調(diào)主電源無法為空調(diào)提供電源的時(shí)候,地鐵車輛內(nèi)的控制器將吸合內(nèi)部的無源觸頭作為緊急逆變器的啟動信號(即圖2中START1與START2閉合導(dǎo)通時(shí),緊急逆變器啟動)。緊急逆變器啟動信號回路形成后,如果輸入電壓正常、逆變器無故障時(shí),緊急逆變器將在20s內(nèi)完成啟動并開始穩(wěn)定工作。緊急逆變器正常工作時(shí),故障報(bào)警觸點(diǎn)處于吸合狀態(tài);緊急逆變器出現(xiàn)故障時(shí),三相輸出停止,故障報(bào)警觸點(diǎn)斷開。(即:正常時(shí),F(xiàn)AULT1與FAULT2閉合導(dǎo)通;故障時(shí),F(xiàn)AULT1與FAULT2開路。)
上傳時(shí)間: 2022-07-01
上傳用戶:
本書共分九章。第1章是基本知識,敘述傳感器和變送器的組成和分類,并介紹若干常用名詞術(shù)語和概念,如靈敏度、精確度、基本誤差等。第2章是檢測溫度用的傳感器和變送器,其中有工業(yè)上廣泛應(yīng)用的熱電偶及熱電阻,近來發(fā)展迅速的半導(dǎo)體和集成化測溫器件,家用電器里常見的各種溫度開關(guān)等。第3章是壓力檢測部分,除介紹了最常用的彈性變形測壓原理之外,對性能較好的電容式壓力變送器有較詳細(xì)的描述,對近來出現(xiàn)的靈巧型壓力變送器也作了介紹。第4章為流量儀表,從自來水表和煤氣表到電磁及超聲流量)都作了原理和性能的分析,對不易理解的質(zhì)量流扯計(jì)進(jìn)行了深入淺出的闡述。第5章物位和第6章成分分別指出了各種傳感器及變送器的 適用條件和性能差異。第7章是機(jī)械量,包括位移、轉(zhuǎn)角、轉(zhuǎn)速、力、轉(zhuǎn)矩及振動,在工業(yè)生產(chǎn)自動化領(lǐng)域,這類傳感器和變送器也經(jīng)常用到。第8章是光強(qiáng),光敏元件是最常遇到的光傳感器,此外發(fā)光元件和光電耦合器在自動化裝置里也經(jīng)常用到,在本章里一井介紹以便應(yīng)用。第9章為磁場檢測 用的傳感器,著重介紹了各種新近出現(xiàn)的磁敏元件和集成化器件。從事自動化工作的讀者,對其原理和性能初步了解是十分有益的。
上傳時(shí)間: 2022-07-05
上傳用戶:kent
負(fù)載的多樣化,特別是負(fù)載功率的多變性,以及人們對設(shè)備成本投入的最低化和階段化,需要適用面更廣,穩(wěn)定性更高,還需要具備冗余性和可擴(kuò)容性的電源與之相適應(yīng)。這些都對傳統(tǒng)的集中式電源提出了挑戰(zhàn),隨著模塊化分布式電源的技術(shù)發(fā)展,模塊電源系統(tǒng)已成為現(xiàn)在和未來電源的發(fā)展趨勢。本文以220V交流輸入,42V-58V直流輸出的AC/DC型模塊電源單元為研究對象,選用PFC+LLC諧振回路為主電路拓?fù)?。首先介紹了PFC主電路和控制芯片,給出主要參數(shù)的設(shè)計(jì),并介紹PFC電路的保護(hù)和延時(shí)電路;然后分析LLC諧振變換器的工作原理,討論LLC諧振變換器的主要特性,給出主要參數(shù)的設(shè)計(jì),并介紹了LLC諧振變換器的控制方案和控制芯片,再次介紹了均流控制方法,重點(diǎn)研究分析了最大電流均流法和限流最大電流均流控制,提出了非選擇性共同控制模式和選擇性控制模式兩種均流控制方案。最后設(shè)計(jì)制作220V交流輸入,輸出功率3kW的模塊電源,并進(jìn)行了不同諧振頻率(40kHz1與100kHz)以及不同電路布局下的對比試驗(yàn)研究,以諧振頻率為100kHz的模塊電源為例,進(jìn)行了并機(jī)均流試驗(yàn)研究,給出了試驗(yàn)波形和結(jié)果。通過對試驗(yàn)結(jié)果的分析,驗(yàn)證了設(shè)計(jì)的可行性。最后分析了不足之處以及今后可能的改進(jìn)方向。
上傳時(shí)間: 2022-07-09
上傳用戶:
移相全橋軟開關(guān)PWM變換器是直流電源實(shí)現(xiàn)高頻化的理想拓?fù)渲?,尤其在中大功率場合?yīng)用十分廣泛。實(shí)現(xiàn)全橋變換器移相PWM控制的傳統(tǒng)方法是通過采用專用集成控制芯片(UC3875、UCC3895等)來調(diào)節(jié)變換器前后臂間的導(dǎo)通相位差,以實(shí)現(xiàn)PWM模擬控制四。相對于模擬控制,數(shù)字控制由于具有集成度高、控制靈活、設(shè)計(jì)延續(xù)性好、易于實(shí)現(xiàn)通訊等優(yōu)點(diǎn)而在電力電子領(lǐng)域得到應(yīng)用。近年來,隨著數(shù)字信號處理技術(shù)日趨成熟,各種微控制器性價(jià)比的不斷提高,采用數(shù)字控制已成為中大功率開關(guān)電源的發(fā)展趨勢問。本文采用一種在變壓器原邊增加一個(gè)諧振電感和兩個(gè)鉗位二極管的全橋變換器作為主電路,利用TI公司最新一款專注于電源數(shù)字控制的DSP微控制器對其進(jìn)行峰值電流模式數(shù)字移相控制,完成了一臺1.2kW(120V/10A)的樣機(jī)。
標(biāo)簽: tms320f28027 dc/dc變換器
上傳時(shí)間: 2022-07-17
上傳用戶:
高頻化、高功率密度和高效率,是DC/DC變換器的發(fā)展趨勢。傳統(tǒng)的硬開關(guān)變換器限制了開關(guān)頻率和功率密度的提高。移相全橋PWNZVSDC/DC變換器可以實(shí)現(xiàn)主開關(guān)管的ZVS,但滯后橋臂實(shí)現(xiàn)ZVS的負(fù)載范圍較?。赫鞫O管存在反向恢復(fù)問題,不利于效率的提高;輸入電壓較高時(shí),變換器效率較低,不適合輸入電壓高和有掉電維持時(shí)間限制的高性能開關(guān)電源。LLC串聯(lián)諧振DC/DC變換器是直流變換器研究領(lǐng)域的熱點(diǎn),可以較好的解決移相全橋PWMZVSDC/DC變換器存在的缺點(diǎn)。但該變換器工作過程較為復(fù)雜,難于設(shè)計(jì)和控制,目前尚處于研究階段。本文以LLC串聯(lián)諧振全橋DC/DC變換器作為研究內(nèi)容。以下是本文的主要研究工作:對LLC串聯(lián)諧振全橋DC/DC變換器的工作原理進(jìn)行了詳細(xì)研究,利用基頻分量近似法建立了變換器的數(shù)學(xué)模型,確定了主開關(guān)管實(shí)現(xiàn)ZVS的條件,推導(dǎo)了邊界負(fù)載條件和邊界頻率,確定了變換器的穩(wěn)態(tài)工作區(qū)域,推導(dǎo)了輸入,輸出電壓和開關(guān)頻率以及負(fù)載的關(guān)系。仿真結(jié)果證明了理論分析的正確性。采用擴(kuò)展描述函數(shù)法建立了變換器在開關(guān)頻率變化時(shí)的小信號模型,在小信號模型的基礎(chǔ)上分析了系統(tǒng)的穩(wěn)定性,根據(jù)動態(tài)性能的要求設(shè)計(jì)了控制器。仿真結(jié)果證明了理論分析的正確性。討論了一臺500m實(shí)驗(yàn)樣機(jī)的主電路和控制電路設(shè)計(jì)問題,給出了設(shè)計(jì)步驟,可以給實(shí)際裝置的設(shè)計(jì)提供參考。最后給出了實(shí)驗(yàn)波形和實(shí)驗(yàn)數(shù)據(jù)。實(shí)驗(yàn)結(jié)果驗(yàn)證了理論分析的正確性。
標(biāo)簽: llc 串聯(lián)諧振 dc/dc變換器
上傳時(shí)間: 2022-07-21
上傳用戶:
HX711是一款專為高精度電子秤而設(shè)計(jì)的24位A/D轉(zhuǎn)換器芯片。與同類型其它芯片相比,該芯片集成了包括穩(wěn)壓電源、片內(nèi)時(shí)鐘振蕩器等其它同類型芯片所需要的外圍電路,具有集成度高、響應(yīng)速度快、抗干擾性強(qiáng)等優(yōu)點(diǎn)。降低了電子秤的整機(jī)成本,提高了整機(jī)的性能和可靠性。該芯片與后端MCU 芯片的接口和編程非常簡單,所有控制信號由管腳驅(qū)動,無需對芯片內(nèi)部的寄存器編程。輸入選擇開關(guān)可任意選取通道A 或通道B,與其內(nèi)部的低噪聲可編程放大器相連。通道A 的可編程增益為128 或64,對應(yīng)的滿額度差分輸入信號幅值分別為±20mV或±40mV。通道B 則為固定的64 增益,用于系統(tǒng)參數(shù)檢測。芯片內(nèi)提供的穩(wěn)壓電源可以直接向外部傳感器和芯片內(nèi)的A/D 轉(zhuǎn)換器提供電源,系統(tǒng)板上無需另外的模擬電源。芯片內(nèi)的時(shí)鐘振蕩器不需要任何外接器件。上電自動復(fù)位功能簡化了開機(jī)的初始化過程。
標(biāo)簽: hx711 A/D轉(zhuǎn)換器
上傳時(shí)間: 2022-07-24
上傳用戶:
超聲波換能器材料
上傳時(shí)間: 2013-06-03
上傳用戶:eeworm
調(diào)制解調(diào)器實(shí)用指南
標(biāo)簽: 調(diào)制解調(diào)器
上傳時(shí)間: 2013-05-29
上傳用戶:eeworm
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1