隨著世界能源危機的到來,太陽能光伏發(fā)電在能源結(jié)構(gòu)中正在發(fā)揮著越來越大的作用。而太陽能光伏發(fā)電系統(tǒng)的核心部件并網(wǎng)逆變器的性能還需要進一步提高。為了迎合市場上對高品質(zhì)、高性能、智能化并網(wǎng)逆變器的需求,我們將ARM+DSP架構(gòu)作為并網(wǎng)逆變器的控制系統(tǒng)。本系統(tǒng)集成了ARM和DSP的各自的強大功能,使并網(wǎng)逆變器的性能和智能化水平得到了顯著提高。本論文是基于山東大學(xué)魯能實習(xí)基地“光伏并網(wǎng)逆變器項目”,目前已經(jīng)試制出樣機。本人主要負責(zé)并網(wǎng)逆變器控制系統(tǒng)的軟硬件設(shè)計工作。本文主要研究內(nèi)容有: 1.本并網(wǎng)逆變器采用了內(nèi)高頻環(huán)逆變技術(shù)。文中詳細分析了這種逆變器的優(yōu)缺點,進行了充分的系統(tǒng)分析和論證。 2.采用MATLAB/Simulink軟件對并網(wǎng)逆變器的控制算法進行仿真,包括前級DC-DC變換的控制算法以及后級DC-AC逆變的控制算法。通過仿真驗證了所設(shè)計算法的可行性,對DSP程序開發(fā)提供了很好的指導(dǎo)意義。 3.本文將ARM+DSP架構(gòu)作為逆變器的控制系統(tǒng),并設(shè)計了相應(yīng)的硬件控制系統(tǒng)。DSP控制板硬件系統(tǒng)包括AD數(shù)據(jù)采集、硬件電流保護、電源、eCAN總線,SPI總線等硬件電路。ARM板硬件系統(tǒng)包括SPI總線、RS232總線、RS480總線、以太網(wǎng)總線、LCD顯示、實時時鐘、鍵盤等硬件電路。 4.本文設(shè)計和實現(xiàn)了兩種最大功率點跟蹤控制算法:功率擾動觀察法或增量電導(dǎo)法;孤島檢測方法采用被動式和主動式兩種檢測方式,被動式所采用的方法是將過/欠電壓和電壓相位突變檢測相結(jié)合的方式,主動式采用正反饋頻率偏移法;為了實現(xiàn)并網(wǎng)逆變器的輸出電流與電網(wǎng)電壓同頻同相,使用了軟件鎖相環(huán)控制技術(shù)。本文分別給出了以上各種算法的控制程序流程圖。 5.本文也給出了AD數(shù)據(jù)采集、eCAN總線、RS232、RS485、以太網(wǎng)、PWM輸出等程序流程圖,以及DSP和ARM之間的SPI總線通信程序流程圖。并且分別給出了ARM管理機控制系統(tǒng)主程序流程圖和DSP控制機控制系統(tǒng)主程序流程圖。 6.最后對并網(wǎng)逆變器樣機進行實驗結(jié)果分析。結(jié)果顯示:該樣機基本上實現(xiàn)了本文提出的設(shè)計方案所應(yīng)完成的各項功能,樣機的性能比較理想。
標(biāo)簽: ARMDSP 架構(gòu) 太陽能光伏 并網(wǎng)逆變器
上傳時間: 2013-07-10
上傳用戶:sz_hjbf
隨著電力電子技術(shù)的發(fā)展,模塊化程度低、缺乏靈活性、設(shè)計復(fù)雜、標(biāo)準(zhǔn)化程度低等因素日益成為制約其發(fā)展的瓶頸。而電力電子結(jié)構(gòu)塊(PEBB)正是為解決以上問題而提出的方法。因此研究利用PEBB來組建功率變換器具有一定的優(yōu)勢和重要的意義。 本文將電子技術(shù)和計算機技術(shù)等領(lǐng)域先進的、成熟的集成相關(guān)的技術(shù)應(yīng)用于電力電子系統(tǒng)集成中,對電力電子系統(tǒng)集成中的操作系統(tǒng)、分布式控制技術(shù)和通信技術(shù)進行了研究。 將電力電子系統(tǒng)進行結(jié)構(gòu)劃分,分為PEBB功率部分和通用控制部分。對于功率部分,采用分立元件設(shè)計了一個半橋PEBB,包括主電路、保護電路、驅(qū)動電路、吸收電路和濾波電路等。在分析和對比了各種通信接口后選擇具有“即插即用”功能的通用串行接口(USB)做為PEBB的數(shù)字通信接口。對于通用控制部分,選用具有高性價比的ARM7芯片S3C44B0X做為核心處理單元,輔以相應(yīng)的外圍電路。采用USB主機控制芯片使其具有類似USB主機的功能,實現(xiàn)與PEBB的通信和方便“即插即用”的管理。在軟件設(shè)計上引入實時操作系統(tǒng)UC/OS-Ⅱ,采用多任務(wù)系統(tǒng)的形式,滿足電力電子操作系統(tǒng)實時性的要求。然后,用兩個半橋PEBB和一個通用控制器組成了一個單相全橋電壓逆變器,分析和解決PEBB之間的同步等問題。最后給出并分析了實驗結(jié)果。 通過上述工作,驗證了PEBB對解決當(dāng)前電力電子技術(shù)系統(tǒng)集成問題的可行性,為后續(xù)研究打下基礎(chǔ)。
上傳時間: 2013-07-12
上傳用戶:weddps
在風(fēng)力發(fā)電系統(tǒng)中,并網(wǎng)逆變器是實現(xiàn)電能饋送給電網(wǎng)的重要環(huán)節(jié)。并網(wǎng)逆變器的性能的好壞直接影響整個風(fēng)力發(fā)電系統(tǒng)。 首先建立了并網(wǎng)逆變器的數(shù)學(xué)模型, 分析了空間矢量脈寬調(diào)制技術(shù) (SVPWM) 。然后采用電
標(biāo)簽: 風(fēng)力發(fā)電系統(tǒng) 并網(wǎng)逆變器
上傳時間: 2013-04-24
上傳用戶:chens000
300W 12V輸入正弦波逆變器 300W 12V輸入正弦波逆變器
上傳時間: 2013-06-01
上傳用戶:firstbyte
并網(wǎng)逆變器并網(wǎng)逆變器并網(wǎng)逆變器并網(wǎng)逆變器
標(biāo)簽: 并網(wǎng)逆變器
上傳時間: 2013-04-24
上傳用戶:jyycc
逆變器在自動控制系統(tǒng)、電機交流調(diào)速、電力變換以及電力系統(tǒng)控制中都起著重要的作用;各系統(tǒng)對逆變器的性能需求也越來越高。PWM控制多重逆變器正是基于這些需求,實現(xiàn)可變頻、調(diào)壓、調(diào)相、低諧波、高穩(wěn)定性的解決方案。 PWM控制逆變器通過對每個脈沖寬度進行控制,以達到控制輸出電壓和改善輸出波形的目的;多重逆變器則是把幾個矩形波逆變器的輸出組合起來起來形成階梯波,從而消除諧波;PWM控制多重逆變器綜合上述兩種技術(shù)的特點,非常適合于應(yīng)用在對諧波、電壓輸出及穩(wěn)定性要求比較高的場合。電力半導(dǎo)體技術(shù)和集成電路技術(shù)的快速發(fā)展,使得多重逆變器的控制、實現(xiàn)成為可能。 本文首先分析風(fēng)力發(fā)電系統(tǒng)對逆變器的要求,從多重逆變器理論和PWM逆變器理論出發(fā),提出同步式PWM控制電壓型串聯(lián)多重逆變器系統(tǒng)解決方案。本方案也可以應(yīng)用在逆變電源、交流電機調(diào)速及電力變換領(lǐng)域中。 文中建立了一個多重逆變器的PWM控制算法模型。該算法可完成頻率、相位、幅值可調(diào)的多重逆變器的PWM控制,且能完成逆變器故障運行下的保護與告警。并在MATLAB/SIMULINK環(huán)境下對算法模型進行仿真與分析。 在比較了現(xiàn)有PWM發(fā)生解決方案的基礎(chǔ)上,本文提出了一個基于FPGA(可編程邏輯陣列)的多重逆變器PWM控制系統(tǒng)實現(xiàn)方案。并給出一個主要由FPGA、ADC/DAC、驅(qū)動與保護電路、逆變器主回路及其他外圍電路構(gòu)成的多重逆變器系統(tǒng)解決方案。實驗結(jié)果表明,此方案系統(tǒng)結(jié)構(gòu)簡單、可行,很好完成上述多重逆變器的PWM控制算法。
上傳時間: 2013-06-28
上傳用戶:wmwai1314
不錯的畢業(yè)論文 很詳細的介紹了光伏逆變器設(shè)計方法
標(biāo)簽: 3KW 光伏并網(wǎng) 逆變器 軟件
上傳時間: 2013-04-24
上傳用戶:nanshan
基于STM32的雙極性逆變器軟件,用于對逆變電源的研究,里面有雙極性SPWM數(shù)組的計算公式
上傳時間: 2013-05-24
上傳用戶:lx9076
現(xiàn)場可編程門陣列器件(FPGA)是一種新型集成電路,可以將眾多的控制功能模塊集成為一體,具有集成度高、實用性強、高性價比、便于開發(fā)等優(yōu)點,因而具有廣泛的應(yīng)用前景。單相全橋逆變器是逆變器的一種基本拓撲結(jié)構(gòu),對它的研究可以為三相逆變器研究提供參考,因此對單相全橋逆變器的分析有著重要的意義。 本文研制了一種基于FPGA的SPWM數(shù)字控制器,并將其應(yīng)用于單相逆變器進行了試驗研究。主要研究內(nèi)容包括:SPWM數(shù)字控制系統(tǒng)軟件設(shè)計以及逆變器硬件電路設(shè)計,并對試驗中發(fā)現(xiàn)的問題進行了深入分析,提出了相應(yīng)的解決方案和減小波形失真的措施。在硬件設(shè)計方面,首先對雙極性/單極性正弦脈寬調(diào)制技術(shù)進行分析,選用適合高頻設(shè)計的雙極性調(diào)制。其次,詳細分析死區(qū)效應(yīng),采用通過判斷輸出電壓電流之間的相位角預(yù)測橋臂電流極性方向,超前補償波形失真的方案。最后,采用電壓反饋實時檢測技術(shù),對PWM進行動態(tài)調(diào)整。在控制系統(tǒng)軟件設(shè)計方面,采用FPGA自上而下的設(shè)計方法,對其控制系統(tǒng)進行了功能劃分,完成了DDS標(biāo)準(zhǔn)正弦波發(fā)生器、三角波發(fā)生器、SPWM產(chǎn)生器以及加入死區(qū)補償?shù)腜WM發(fā)生器、電流極性判斷(零點判斷模塊和延時模塊)和反饋等模塊的設(shè)計。針對仿真和實驗中的毛刺現(xiàn)象,分析其產(chǎn)生機理,給出常用的解決措施,改進了系統(tǒng)性能。
上傳時間: 2013-07-06
上傳用戶:66666
交流電源供電方式正在由集中式向分布式、全功能式發(fā)展,而實現(xiàn)分布式電源的核心就是模塊的并聯(lián)技術(shù)。多臺逆變器并聯(lián)可以實現(xiàn)大容量供電和冗余供電,可大大提高系統(tǒng)的靈活性,使電源系統(tǒng)的體積重量大為降低,同時其主開關(guān)器件的電流應(yīng)力也可大大減少,從根本上提高了可靠性、降低成本和提高功率密度。本文主要研究逆變器并聯(lián)技術(shù)。 本文首先對電壓、電流雙閉環(huán)逆變器控制系統(tǒng)進行了研究。通過對傳遞函數(shù)的分析,得到了基于等效輸出阻抗的雙閉環(huán)控制的逆變器并聯(lián)系統(tǒng)模型。在分析逆變器模型的基礎(chǔ)上設(shè)計了各控制器參數(shù),并通過MATLAB仿真進行了驗證。根據(jù)上述模型,分析了逆變器并聯(lián)的環(huán)流特性,以及基于有功和無功功率的并聯(lián)控制方案。 隨著電子技術(shù)的不斷發(fā)展,F(xiàn)PGA技術(shù)正在越來越多地用于工程實踐中。本文在研究SPWM控制技術(shù)的基礎(chǔ)上,應(yīng)用FPGA芯片EP1C12Q240C8實現(xiàn)了SPWM數(shù)字控制器,用于多模塊逆變器并聯(lián)控制系統(tǒng)。文中給出了仿真結(jié)果和芯片的測試結(jié)果。 基于FPGA的三相逆變器并聯(lián)數(shù)字控制器的研究具有現(xiàn)實意義,設(shè)計具有創(chuàng)新性。仿真和芯片的初步測試結(jié)果表明:本文設(shè)計的基于FPGA的逆變器并聯(lián)數(shù)字控制器能夠滿足逆變器并聯(lián)系統(tǒng)的要求。
標(biāo)簽: FPGA 三相逆變器 并聯(lián) 技術(shù)研究
上傳時間: 2013-08-05
上傳用戶:ccclll
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1