亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

逆變器

  • 三電平變頻器技術(shù)的實(shí)用化研究.rar

    近年來,在電氣傳動領(lǐng)域中三電平變頻器得到了廣泛的應(yīng)用。三電平逆變器拓?fù)浣Y(jié)構(gòu)的出現(xiàn)為高電壓、大功率變頻器的實(shí)現(xiàn)提供了一個有效的途徑。研究和開發(fā)三電平大功率變頻器,無論在技術(shù)上還是在實(shí)際應(yīng)用上都有十分重要的意義。本文圍繞三電平大功率通用變頻器的實(shí)用化技術(shù)進(jìn)行了深入分析和研究。 論文首先介紹了三電平逆變器主電路的拓?fù)浣Y(jié)構(gòu)、控制要求、基本原理、特性和PWM控制策略以及調(diào)試中存在的問題和相關(guān)的解決方法。 中點(diǎn)電位不平衡是三電平拓?fù)浣Y(jié)構(gòu)的一個固有問題。針對這一問題,本論文分析了中點(diǎn)電壓不平衡的根本原因,采用了一種基于滯環(huán)控制的電壓平衡控制方法。該方法根據(jù)負(fù)載電流方向的不同組合,通過調(diào)整小矢量的冗余狀態(tài)和作用時間,并充分考慮到中矢量對中點(diǎn)平衡的影響,動態(tài)調(diào)整兩個電容器上的電壓,同時,詳細(xì)地分析了當(dāng)參考電壓矢量落到具有一種或兩種冗余小矢量的小三角形區(qū)間時開關(guān)狀態(tài)的選擇、開關(guān)序列的順序以及作用時間的分配。 基于載波的調(diào)制策略是三電平變頻器采用的主要調(diào)制方式之一。本論文對所采用的基于載波的調(diào)制策略,作了深入分析,得出了相應(yīng)的諧波特性。基于諧波總含量,對調(diào)制特性的優(yōu)劣進(jìn)行了比較,同時得出了不同載波調(diào)制策略輸出電壓諧波含量與調(diào)制度變化的對應(yīng)關(guān)系,并通過實(shí)驗(yàn)和仿真對相關(guān)結(jié)果進(jìn)行了驗(yàn)證。 主電路和控制電路的硬件設(shè)計將直接影響到變頻器的運(yùn)行性能。本論文介紹了在現(xiàn)場實(shí)際運(yùn)行中變頻器的主回路及其控制回路的硬件設(shè)計,采用理論計算與實(shí)踐驗(yàn)證相結(jié)合的方法得出器件相關(guān)參數(shù),并且針對變頻器內(nèi)外RCD緩沖電路在工作時所產(chǎn)生的電壓不平衡作了分析,詳細(xì)的給出了其緩沖吸收電路算法。 最后,把本文的部分研究結(jié)果應(yīng)用于實(shí)際工業(yè)現(xiàn)場中,研制了690V/600kW的大功率中壓變頻器,給出了現(xiàn)場運(yùn)行結(jié)果。運(yùn)行結(jié)果表明該變頻器輸出波形良好,性能滿足要求。

    標(biāo)簽: 三電平 變頻器

    上傳時間: 2013-08-04

    上傳用戶:kirivir

  • 基于Delta逆變技術(shù)的串聯(lián)補(bǔ)償式交流穩(wěn)壓電源的研究.rar

    當(dāng)今高新技術(shù)不斷發(fā)展,越來越多的高精度儀器設(shè)備對輸入電源,特別是對輸入交流電源的穩(wěn)壓精度要求越來越高。與此同時,隨著我國經(jīng)濟(jì)的發(fā)展和用電負(fù)載的急劇增加,電壓波動和波形畸變等供電質(zhì)量問題日趨突出,不能滿足高精度儀器設(shè)備的需要,因而就需要在電網(wǎng)和這些設(shè)備之間增加高穩(wěn)壓精度、寬穩(wěn)壓范圍的交流穩(wěn)壓電源。基于Delta逆變技術(shù)的交流穩(wěn)壓電源既能進(jìn)行瞬時的交流電壓穩(wěn)定補(bǔ)償,又能提高整流輸入端的功率因數(shù),減少諧波對電網(wǎng)的污染,因而具有重要的實(shí)際意義和研究價值。 本文采取串聯(lián)補(bǔ)償型變換器作為主電路的拓?fù)浣Y(jié)構(gòu),并從能量雙向傳輸方面對主電路進(jìn)行了詳細(xì)闡述。針對Delta逆變器工作特點(diǎn)對交流穩(wěn)壓電源的工作原理進(jìn)行了分析,并提出一種正向補(bǔ)償采取整流加高頻斬波,負(fù)向補(bǔ)償采取有源箝位Buck變換器的工作模式。建立Delta逆變器與電網(wǎng)相互作用的等效電路模型,得出了理想補(bǔ)償電壓與實(shí)際補(bǔ)償電壓定量關(guān)系式,分析了逆變輸出濾波器的結(jié)構(gòu)、位置對濾波效果的影響和電氣參數(shù)對實(shí)際補(bǔ)償效果的作用規(guī)律。完成了逆變器的輸出濾波器、補(bǔ)償變壓器的設(shè)計和PWM整流器電容參數(shù)的計算。 針對穩(wěn)壓系統(tǒng)中Delta逆變器和PWM整流器兩個主體環(huán)節(jié),對Delta逆變器的前饋、反饋控制特性和PWM整流器的間接、直接電流控制特性分別進(jìn)行了綜合比較,并應(yīng)用MATLAB軟件建立了改進(jìn)前饋控制與直接電流控制的仿真模型,對Delta逆變交流穩(wěn)壓速度和精度進(jìn)行了系統(tǒng)仿真分析,給出了仿真波形,驗(yàn)證了文中所述控制策略的可行性。

    標(biāo)簽: Delta 逆變技術(shù) 串聯(lián)補(bǔ)償

    上傳時間: 2013-07-10

    上傳用戶:1047385479

  • 動態(tài)匹配換能器的超聲波電源控制策略.rar

    超聲波電源廣泛應(yīng)用于超聲波加工、診斷、清洗等領(lǐng)域,其負(fù)載超聲波換能器是一種將超音頻的電能轉(zhuǎn)變?yōu)闄C(jī)械振動的器件。由于超聲換能器是一種容性負(fù)載,因此換能器與發(fā)生器之間需要進(jìn)行阻抗匹配才能工作在最佳狀態(tài)。串聯(lián)匹配能夠有效濾除開關(guān)型電源輸出方波存在的高次諧波成分,因此應(yīng)用較為廣泛。但是環(huán)境溫度或元件老化等原因會導(dǎo)致?lián)Q能器的諧振頻率發(fā)生漂移,使諧振系統(tǒng)失諧。傳統(tǒng)的解決辦法就是頻率跟蹤,但是頻率跟蹤只能保證系統(tǒng)整體電壓電流同頻同相,由于工作頻率改變了而匹配電感不變,此時換能器內(nèi)部動態(tài)支路工作在非諧振狀態(tài),導(dǎo)致?lián)Q能器功率損耗和發(fā)熱,致使輸出能量大幅度下降甚至停振,在實(shí)際應(yīng)用中受到限制。所以,在跟蹤諧振點(diǎn)調(diào)節(jié)逆變器開關(guān)頻率的同時應(yīng)改變匹配電感才能使諧振系統(tǒng)工作在最高效能狀態(tài)。針對按固定諧振點(diǎn)匹配超聲波換能器電感參數(shù)存在的缺點(diǎn),本文應(yīng)用耦合振蕩法對換能器的匹配電感和耦合頻率之間的關(guān)系建立數(shù)學(xué)模型,證實(shí)了匹配電感隨諧振頻率變化的規(guī)律。給出利用這一模型與耦合工作頻率之間的關(guān)系動態(tài)選擇換能器匹配電感的方法。經(jīng)過分析比較,選擇了基于磁通控制原理的可控電抗器作為匹配電感,通過改變電抗控制度調(diào)節(jié)電抗值。并給出了實(shí)現(xiàn)這一方案的電路原理和控制方法。最后本文以DSP TMS320F2812為核心設(shè)計出實(shí)現(xiàn)這一原理的超聲波逆變電源。實(shí)驗(yàn)結(jié)果表明基于磁通控制的可控電抗器可以實(shí)現(xiàn)電抗值隨電抗控制度線性無級可調(diào),由于該電抗器輸出正弦波,理論上沒有諧波污染。具體采用復(fù)合控制策略,穩(wěn)態(tài)時,換能器工作在DPLL鎖定頻率上;動態(tài)時,逐步修改匹配電抗大小,搜索輸出電流的最大值,再結(jié)合DPLL鎖定該頻率。配合PS-PWM可實(shí)現(xiàn)功率連續(xù)可調(diào)。該超聲波換能系統(tǒng)能夠有效的跟隨最大電流輸出頻率,即使頻率發(fā)生漂移系統(tǒng)仍能保持工作在最佳狀態(tài),具有實(shí)際應(yīng)用價值。

    標(biāo)簽: 動態(tài) 換能器 超聲波電源

    上傳時間: 2013-04-24

    上傳用戶:lacsx

  • 基于CAN總線的三相逆變電源并聯(lián)運(yùn)行研究.rar

    近年來隨著能源短缺和供電設(shè)備對供電電源的性能和可靠性要求的提高,逆變電源并聯(lián)運(yùn)行技術(shù)得到了大力發(fā)展。在逆變電源并聯(lián)技術(shù)中,最重要的是如何限制模塊間的環(huán)流,并使并聯(lián)模塊最終達(dá)到同步運(yùn)行。傳統(tǒng)方法被證明已經(jīng)不能滿足要求,隨著DSP數(shù)字信號處理器運(yùn)算速度越來越快,將DSP應(yīng)用到逆變電源并聯(lián)系統(tǒng)中已經(jīng)成為一種趨勢。本文在比較了國內(nèi)外的并聯(lián)系統(tǒng)控制策略的基礎(chǔ)上,提出了將工業(yè)自動化領(lǐng)域熱門的現(xiàn)場CAN總線技術(shù)引用到系統(tǒng)中,實(shí)現(xiàn)了真正的分布式控制和并聯(lián)逆變電源系統(tǒng)的智能化,提高了實(shí)際運(yùn)行中系統(tǒng)的可靠性。在研究和分析了單臺三相逆變電源的數(shù)學(xué)模型的基礎(chǔ)上,設(shè)計了基于SVPWM調(diào)制和電壓閉環(huán)反饋控制的三相逆變電源,作為并聯(lián)系統(tǒng)的基礎(chǔ)。在并聯(lián)運(yùn)行技術(shù)的研究中,重點(diǎn)分析了并聯(lián)系統(tǒng)的環(huán)流特性,電壓特性和功率特性,提出了一種基于CAN總線的功率均分控制策略。仿真結(jié)果證明,這種方法對于環(huán)流的抑制和并聯(lián)模塊的同步運(yùn)行是行之有效的。針對并聯(lián)逆變電源系統(tǒng),本文設(shè)計了CAN總線的接口電路和相應(yīng)的通信模塊,并在DSP上實(shí)現(xiàn),確保了在并聯(lián)運(yùn)行過程中數(shù)據(jù)傳輸?shù)耐暾院蛯?shí)時性。最后在TMS320LF2407平臺上,給出了逆變器控制和并聯(lián)相關(guān)的硬件電路和軟件流程圖,并用MATLAB對本文涉及到的關(guān)鍵算法進(jìn)行了仿真分析,給出了相應(yīng)的波形。

    標(biāo)簽: CAN 總線 三相逆變電源

    上傳時間: 2013-06-08

    上傳用戶:nbdedu

  • 三相光伏并網(wǎng)逆變電源的研制.rar

    隨著市場經(jīng)濟(jì)和現(xiàn)代化工業(yè)的發(fā)展,能源短缺和環(huán)境污染,已經(jīng)成為制約人類社會健康發(fā)展的兩大重要因素。新能源的開發(fā)與利用愈來愈受到重視,太陽能以其清潔環(huán)保、蘊(yùn)藏豐富等優(yōu)點(diǎn)逐步得到了開發(fā)利用。光伏逆變電源作為太陽能利用中主要的能量變換裝置,是目前研究和發(fā)展的重要環(huán)節(jié)。 本文以實(shí)際項目為背景,詳細(xì)地分析了30kVA三相光伏并網(wǎng)逆變電源的研制過程。論文的主要工作如下: 首先,概述了光伏發(fā)電的意義以及我國光伏產(chǎn)業(yè)的發(fā)展現(xiàn)狀及前景;介紹了本課題的來源及其主要研究的內(nèi)容;分析了三相逆變器的數(shù)學(xué)模型;總結(jié)了三相逆變器的各種抗三相不平衡的拓?fù)浣Y(jié)構(gòu),從中選擇了三相四橋臂作為逆變電源的主電路結(jié)構(gòu);對四橋臂的各種抗三相不平衡控制策略進(jìn)行了比較,具體分析了二維空間矢量法的原理,考慮到實(shí)際的軟硬件條件的限制,對該方法提出了進(jìn)一步簡化應(yīng)用的方案。 接著,根據(jù)項目指標(biāo),研制了30kVA三相光伏逆變電源樣機(jī)的主電路;采用了獨(dú)立運(yùn)行時為LC結(jié)構(gòu),并網(wǎng)運(yùn)行時為LCL結(jié)構(gòu)的濾波模式,并總結(jié)了濾波器參數(shù)設(shè)計的步驟,給出了濾波器的相關(guān)參數(shù);獨(dú)立地設(shè)計和研制了以TMS320F2812芯片為核心的主控板,以及液晶顯示、保護(hù)、采樣、鎖相等控制電路,并總結(jié)了印制電路板設(shè)計中需要注意的事項。 隨后,介紹了DSP的編程環(huán)境:詳細(xì)地分析了顯示鍵盤程序、七段式的電壓空間矢量PWM程序以及相關(guān)的主程序和中斷程序并給出了流程圖;總結(jié)了編程注意事項;構(gòu)思了光伏逆變電源并網(wǎng)運(yùn)行的整個過程;具體地說明了鎖相環(huán)和捕獲單元的應(yīng)用方法;概述了孤島效應(yīng)的產(chǎn)生與防治。 最后,設(shè)計了獨(dú)立運(yùn)行時的MATLAB仿真試驗(yàn),在閉環(huán)中采用了最大誤差控制法,取得了良好的仿真效果,并在此基礎(chǔ)上,進(jìn)行了30kVA三相光伏并網(wǎng)逆變電源樣機(jī)的安裝,順利完成了獨(dú)立運(yùn)行的調(diào)試,并給出了實(shí)驗(yàn)波形。

    標(biāo)簽: 三相 光伏并網(wǎng) 逆變電源

    上傳時間: 2013-07-02

    上傳用戶:matlab

  • 光伏發(fā)電系統(tǒng)逆變技術(shù)研究.rar

    在能源枯竭及環(huán)境污染問題日益嚴(yán)重的今天,光伏發(fā)電是未來可再生能源應(yīng)用的一種重要方法。本文以光伏逆變技術(shù)為研究對象,對光伏系統(tǒng)最大功率點(diǎn)跟蹤方法、光伏智能充電控制策略、光伏并網(wǎng)系統(tǒng)拓?fù)浣Y(jié)構(gòu)與控制方法、光伏并網(wǎng)與有源濾波統(tǒng)一控制方法等問題進(jìn)行了深入研究。 在擾動觀測法的基礎(chǔ)上,提出了一種直接電流控制最大功率點(diǎn)跟蹤方法,通過檢測變換器輸出電流進(jìn)行最大功率點(diǎn)跟蹤控制,簡化控制算法,同時省去了擾動觀測法中的電壓和電流傳感器,降低系統(tǒng)成本。 研究了一種實(shí)用的光伏系統(tǒng)蓄電池充電控制策略,將最大功率點(diǎn)跟蹤與智能充電控制有機(jī)結(jié)合在一起,充分利用光伏電池的輸出功率,縮短充電時間,提高充電效率;研究了一種全數(shù)字式逆變器,通過電壓有效值外環(huán)和瞬時值內(nèi)環(huán)的雙閉環(huán)控制,既能保證系統(tǒng)輸出電壓的穩(wěn)態(tài)精度,又能保證瞬變負(fù)載條件下的動態(tài)特性。研制了一套3kW光伏獨(dú)立發(fā)電系統(tǒng)并進(jìn)行了實(shí)驗(yàn)驗(yàn)證。 針對住宅型光伏并網(wǎng)逆變器體積小、性能價格比高的要求,研究了一種基于導(dǎo)抗變換器的并網(wǎng)逆變器拓?fù)浣Y(jié)構(gòu),相比于傳統(tǒng)電流型逆變器,本拓?fù)涫∪チ吮恐氐碾娍蛊鳎瑫r利用高頻變壓器進(jìn)行能量傳遞和電氣隔離,進(jìn)一步降低了系統(tǒng)損耗和體積,降低系統(tǒng)成本。 經(jīng)研究發(fā)現(xiàn),由于導(dǎo)抗變換器的固有特性,采用傳統(tǒng)的SPWM調(diào)制方法將導(dǎo)致并網(wǎng)逆變器輸出平頂飽和的非正弦電流,造成對電網(wǎng)的諧波污染,提出了一種新型改進(jìn)調(diào)制模式。該方法可以實(shí)現(xiàn)高功率因數(shù)、低諧波并網(wǎng)發(fā)電。根據(jù)上述理論分析,研制了一臺3kW單相光伏并網(wǎng)逆變器,實(shí)驗(yàn)結(jié)果驗(yàn)證了理論分析的正確性。 研究了一種三相電流型并網(wǎng)逆變器拓?fù)浣Y(jié)構(gòu)及其控制方法,采用改進(jìn)調(diào)制模式對其進(jìn)行控制,在諧波抑制方面取得了滿意的效果。提出的三相并網(wǎng)逆變方案,相比于傳統(tǒng)三相并網(wǎng)逆變器,具有如下顯著優(yōu)點(diǎn):系統(tǒng)中任意一相都是一個獨(dú)立的子系統(tǒng),不受其它相影響,即使在某一相或某兩相損壞的情況下,剩余相也能正常運(yùn)行,增加了系統(tǒng)的冗余性;在三相電網(wǎng)不平衡情況下,本方法也能提供穩(wěn)定的三相電流,增加系統(tǒng)抗電網(wǎng)波動能力。初看起來本方案使用的導(dǎo)抗變換器和變壓器有3套,但是每相承受的功率容量只有系統(tǒng)總功率的三分之一,這樣可以選用較小容量的器件,有利于高頻電感和變壓器的制作和生產(chǎn)。提出了一種基于導(dǎo)抗變換器的三相電流型逆變器實(shí)現(xiàn)方案,利用導(dǎo)抗變換器將輸入直流電壓變換為高頻正弦電流,經(jīng)高頻變壓器隔離及電流等級變換后進(jìn)行裂相調(diào)制,輸出為三相正弦電流。該方法不僅省去了傳統(tǒng)電流型逆變器直流側(cè)電抗器,而且采用高頻變換進(jìn)行功率傳輸,減小了隔離變壓器及輸出濾波器的體積,有利于裝置的小型化和降低成本。 針對光伏電池輸出電壓較低的問題,研究了一種單級式三相升壓型并網(wǎng)逆變器,通過一級變換同時實(shí)現(xiàn)升壓和DC/AC變換功能,并且提出了一種基于DSP芯片的控制策略,本方法僅用一個電壓傳感器就能替代原先的三個電壓傳感器:每個載波周期短路相只進(jìn)行一次開關(guān)動作,同時任何時刻只有2個開關(guān)管導(dǎo)通,可有效降低系統(tǒng)的開關(guān)損耗和導(dǎo)通損耗;由于采用DSP控制,具有控制靈活、穩(wěn)定性高、成本低、并網(wǎng)電能質(zhì)量好,便于功率調(diào)節(jié)等優(yōu)點(diǎn)。 提出了一種光伏并網(wǎng)與有源濾波兼用的統(tǒng)一控制策略,在同一套裝置上既實(shí)現(xiàn)光伏并網(wǎng)發(fā)電,又實(shí)現(xiàn)諧波補(bǔ)償,克服目前的光伏發(fā)電裝置白天發(fā)電、夜間停機(jī)的不足,提高系統(tǒng)利用率。詳細(xì)分析了無功電流和諧波電流的檢測方法、光伏并網(wǎng)發(fā)電有功指令電流的生成方法及電流環(huán)控制器和電壓環(huán)控制器的設(shè)計方法,并對光伏并網(wǎng)發(fā)電與有源濾波統(tǒng)一控制模式和單一有源濾波模式進(jìn)行了討論,仿真和實(shí)驗(yàn)結(jié)果驗(yàn)證了所提出的系統(tǒng)結(jié)構(gòu)及控制策略的正確性和可行性。

    標(biāo)簽: 光伏發(fā)電系統(tǒng) 逆變 技術(shù)研究

    上傳時間: 2013-04-24

    上傳用戶:dancnc

  • 基于DSP的逆變電源數(shù)字控制技術(shù)的研究.rar

    隨著現(xiàn)代科技的迅速發(fā)展,逆變電源的應(yīng)用越來越廣泛。同時,各行各業(yè)對逆變電源的性能也提出了更高的要求。好的逆變電源輸出波形要求不但具有高的穩(wěn)態(tài)性能,還應(yīng)有快的動態(tài)響應(yīng)。單一的控制策略很難同時滿足這兩方面的要求。因此,各種控制策略取長補(bǔ)短、相互滲透,構(gòu)成復(fù)合控制器,是一種趨勢所在。 本文討論了當(dāng)今各種比較流行的數(shù)字控制策略的優(yōu)缺點(diǎn),重點(diǎn)分析了無差拍控制和重復(fù)控制這兩種控制策略的控制原理,并對其控制算法做了適當(dāng)改進(jìn)。無差拍控制動態(tài)性能極佳,但其穩(wěn)態(tài)性能不理想,尤其是在帶非線性負(fù)載時輸出電壓波形的總諧波畸變較大;而重復(fù)控制恰恰相反,它有著很好的穩(wěn)態(tài)性能,但由于周期延遲環(huán)節(jié)的存在,控制指令不是立即輸出,而是滯后一個參考周期才輸出,使其動態(tài)性能較差。本文采用單相全橋拓?fù)浣Y(jié)構(gòu)為逆變器主電路,建立了它的連續(xù)狀態(tài)空間模型和離散狀態(tài)空間模型,分析了它的開環(huán)輸出特性,并分別闡述了改進(jìn)的無差拍控制器和重復(fù)控制器參數(shù)的設(shè)計方法。 文章提出將改進(jìn)的無差拍控制和重復(fù)控制這兩種控制策略相結(jié)合,組成復(fù)合控制策略。利用MATLAB建立了控制系統(tǒng)的仿真模型,仿真實(shí)驗(yàn)結(jié)果證明該復(fù)合控制策略能使逆變電源獲得理想的穩(wěn)態(tài)和動態(tài)性能。最后介紹了以高性能數(shù)字信號處理器TMS320F2812為控制核心的逆變電源控制系統(tǒng)的軟硬件設(shè)計。

    標(biāo)簽: DSP 逆變電源數(shù)字 控制技術(shù)

    上傳時間: 2013-07-31

    上傳用戶:liber

  • 逆變.rar

    車載電源逆變器的電路原理圖,功率可以達(dá)到1000w

    標(biāo)簽: 逆變

    上傳時間: 2013-06-17

    上傳用戶:zhangzhenyu

  • 現(xiàn)代逆變技術(shù)及其應(yīng)用

    現(xiàn)代逆變技術(shù)及其應(yīng)用!對逆變器原理和設(shè)計很有幫助的資料!

    標(biāo)簽: 逆變技術(shù)

    上傳時間: 2013-07-09

    上傳用戶:yumiaoxia

  • SVPWM逆變技術(shù)的原理及仿真模型

    ·SPWM 逆變器控制技術(shù)研究研究生姓名:何中一學(xué)科、專業(yè) :電力電子與電力傳動研 究 方 向: 功率電子變換技術(shù)指 導(dǎo) 教 師: 邢巖 教授南京航空航天大學(xué)研究生院 自動化學(xué)院二ΟΟ五年二月目 錄第一章 緒論 ………………………………………………………… 11.1 SPWM 逆變器及其控制策略 ……………………………………………… 11.2 模擬控制方式和數(shù)字控制方式………………………………………

    標(biāo)簽: SVPWM 逆變技術(shù) 仿真模型

    上傳時間: 2013-06-26

    上傳用戶:adamszq

亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产专区精品视频| 99re6这里只有精品| 国产精品一级久久久| 国产农村妇女毛片精品久久莱园子 | 国产精品一区二区欧美| 国产精品日韩欧美大师| 国产日韩欧美综合| 亚洲成色精品| 99热免费精品在线观看| 午夜精品久久久| 久久久亚洲国产天美传媒修理工| 欧美成人国产一区二区| 国产精品久久| 韩日视频一区| 99精品欧美一区二区三区| 亚洲欧美在线高清| 久久一区二区三区国产精品| 欧美女主播在线| 国产欧美精品xxxx另类| 在线精品观看| 亚洲一区二区精品在线| 久久漫画官网| 欧美日韩中文字幕日韩欧美| 国产一区二区你懂的| 亚洲狼人综合| 欧美亚洲专区| 欧美一级专区| 欧美电影在线| 国产精品视频yy9099| 亚洲成色777777女色窝| 在线午夜精品| 久久亚洲午夜电影| 国产精品地址| 亚洲高清视频中文字幕| 亚洲一级电影| 可以看av的网站久久看| 国产精品户外野外| 91久久午夜| 欧美专区在线观看| 欧美日本精品一区二区三区| 国产精品推荐精品| 亚洲免费成人| 久久人人97超碰国产公开结果| 欧美午夜电影完整版| 国内成人在线| 亚洲无线一线二线三线区别av| 性欧美1819性猛交| 欧美日韩国产成人在线91| 国产一区二区三区av电影| 一区电影在线观看| 免费国产一区二区| 国产美女精品免费电影| 99精品欧美一区二区蜜桃免费| 久久久噜噜噜久久中文字幕色伊伊| 欧美日韩精品欧美日韩精品| 好吊成人免视频| 日韩午夜电影av| 欧美中文字幕久久| 国产精品劲爆视频| av成人国产| 美女国产一区| 美女主播精品视频一二三四| 国产日韩欧美一区二区三区四区| 欧美日韩喷水| 亚洲国产精品毛片| 久久久综合网站| 国产精品一区久久久| 亚洲理伦在线| 欧美18av| 在线观看日韩av先锋影音电影院| 亚久久调教视频| 国产精品乱子久久久久| 在线视频欧美一区| 欧美日一区二区三区在线观看国产免| 亚洲国产导航| 久久美女性网| 精品va天堂亚洲国产| 欧美资源在线观看| 国产精品成人午夜| 亚洲无毛电影| 国产精品高清网站| 亚洲午夜精品17c| 中文日韩在线| 欧美日韩在线一区二区| 一本久久a久久免费精品不卡 | 欧美交受高潮1| 亚洲高清成人| 久久精品一区二区| 韩国一区二区三区在线观看| 亚洲欧美另类在线观看| 欧美特黄一级| 亚洲靠逼com| 欧美日本不卡| 夜夜精品视频| 欧美色综合天天久久综合精品| 亚洲精品小视频| 欧美巨乳在线| 一区二区三区久久久| 欧美紧缚bdsm在线视频| 亚洲美女av电影| 欧美日韩妖精视频| 在线一区二区三区四区五区| 欧美日韩99| 夜夜精品视频| 国产精品久久久久三级| 先锋亚洲精品| 国产亚洲成av人在线观看导航 | 国产欧美日韩不卡免费| 久久99伊人| 国精品一区二区| 久久国产婷婷国产香蕉| 一区二区三区在线免费观看 | 午夜视频在线观看一区| 国产精品香蕉在线观看| 午夜精品久久久久久久久久久久久| 欧美日韩卡一卡二| 一本色道久久88综合日韩精品| 久久另类ts人妖一区二区| 亚洲高清影视| 欧美日韩免费观看一区三区 | 免费欧美日韩国产三级电影| 亚洲美女一区| 国产精品一卡二| 久久精品国产欧美亚洲人人爽| 黄色成人免费网站| 欧美激情视频一区二区三区在线播放| 99综合视频| 亚洲激情视频在线观看| 欧美视频日韩视频在线观看| 午夜视频久久久| 欧美日本韩国一区二区三区| 亚洲一区自拍| 激情久久五月| 欧美日韩一区二区视频在线 | 久久久久久日产精品| 亚洲东热激情| 欧美亚韩一区| 久久免费99精品久久久久久| 亚洲久久一区二区| 国产午夜精品美女视频明星a级 | 麻豆成人精品| 亚洲视频一二三| 一区在线电影| 国产精品久久久久一区二区三区共| 久久精品国产999大香线蕉| 亚洲激情第一页| 国产精品综合不卡av| 欧美不卡视频| 欧美一级午夜免费电影| 亚洲欧洲精品一区二区三区| 国产精品一区二区久久久久| 欧美国产日本高清在线| 欧美在线观看一二区| 日韩一级片网址| 国内揄拍国内精品久久| 欧美日韩免费在线| 久久夜色精品| 午夜精品福利视频| 日韩视频一区二区在线观看 | 国产专区一区| 国产精品高清一区二区三区| 巨乳诱惑日韩免费av| 亚洲字幕在线观看| 亚洲精品欧美日韩专区| 国产专区综合网| 国产精品白丝av嫩草影院| 国产亚洲欧美日韩在线一区| 国产精品丝袜xxxxxxx| 在线综合亚洲| 久久综合久久综合这里只有精品| 欧美视频一区在线观看| 国产一区二区三区四区hd| 亚洲伦理精品| 美女免费视频一区| 狠狠色2019综合网| 亚洲欧美日韩区| 欧美香蕉大胸在线视频观看| 亚洲精品一区二区在线| 欧美激情va永久在线播放| 最新成人av在线| 国内成人精品视频| 国产欧美短视频| 欧美色图一区二区三区| 欧美成人三级在线| 久久黄色级2电影| 亚洲午夜三级在线| 亚洲精品一级| 国产一区二区三区直播精品电影| 亚洲精品在线免费观看视频| 国产日韩成人精品| 欧美日韩国产在线看| 老巨人导航500精品| 久久精品视频网| 亚洲欧美一区二区原创| 亚洲美女一区| 海角社区69精品视频| 国产精品高潮呻吟久久av无限 | 亚洲人成网站在线播| 国产三级欧美三级| 国产日韩在线视频|