視頻編碼電路主要實(shí)現(xiàn)接收8位CCIR656格式的YUV數(shù)據(jù),(例如MPEG解碼數(shù)據(jù)),并編碼成亮度Y和色度信號(hào)C,以及合成CVBS信號(hào),經(jīng)過(guò)D/A轉(zhuǎn)換后輸出。基本的編碼功能包括副載波產(chǎn)生,色差信號(hào)調(diào)制,同步信號(hào)內(nèi)插。 主要應(yīng)用在視頻處理,軍事圖像處理。 GM7221設(shè)計(jì)原理圖
上傳時(shí)間: 2013-12-29
上傳用戶(hù):Divine
//下面是畫(huà)圓的程序, //畫(huà)線(xiàn)、畫(huà)圓、畫(huà)各種曲線(xiàn)其實(shí)都很簡(jiǎn)單,歸根到底就是x、y的二元方程嘛 //對(duì)算法感興趣的話(huà)建議去找本《計(jì)算機(jī)圖形學(xué)》看看,不是賣(mài)關(guān)子哦。實(shí)在是幾句話(huà)說(shuō)不清除,呵呵 // ---------------------------------------------- //字節(jié) void circleDot(unsigned char x,unsigned char y,char xx,char yy)//內(nèi)部函數(shù),對(duì)稱(chēng)法畫(huà)圓的8個(gè)鏡像點(diǎn) {//對(duì)稱(chēng)法畫(huà)圓的8個(gè)鏡像點(diǎn)
標(biāo)簽: 程序
上傳時(shí)間: 2014-01-07
上傳用戶(hù):秦莞爾w
實(shí)驗(yàn)題目:Hermite插值多項(xiàng)式 相關(guān)知識(shí):通過(guò)n+1個(gè)節(jié)點(diǎn)的次數(shù)不超過(guò)2n+1的Hermite插值多項(xiàng)式為: 其中,Hermite插值基函數(shù) 數(shù)據(jù)結(jié)構(gòu):三個(gè)一維數(shù)組或一個(gè)二維數(shù)組 算法設(shè)計(jì):(略) 編寫(xiě)代碼:(略) 實(shí)驗(yàn)用例: 已知函數(shù)y=f(x)的一張表(其中 ): x 0.10 0.20 0.30 0.40 0.50 y 0.904837 0.818731 0.740818 0.670320 0.606531 m -0.904837 -0.818731 -0.740818 -0.670320 -0.606531 x 0.60 0.70 0.80 0.90 1.00 y 0.548812 0.496585 0.449329 0.406570 0.367879 m -0.548812 -0.496585 -0.449329 -0.406570 -0.367879 實(shí)驗(yàn)用例:利用Hermite插值多項(xiàng)式 求被插值函數(shù)f(x)在點(diǎn)x=0.55處的近似值。建議:畫(huà)出Hermite插值多項(xiàng)式 的曲線(xiàn)。
標(biāo)簽: Hermite 多項(xiàng)式 插值 實(shí)驗(yàn)
上傳時(shí)間: 2013-12-24
上傳用戶(hù):czl10052678
Batch version of the back-propagation algorithm. % Given a set of corresponding input-output pairs and an initial network % [W1,W2,critvec,iter]=batbp(NetDef,W1,W2,PHI,Y,trparms) trains the % network with backpropagation. % % The activation functions must be either linear or tanh. The network % architecture is defined by the matrix NetDef consisting of two % rows. The first row specifies the hidden layer while the second % specifies the output layer. %
標(biāo)簽: back-propagation corresponding input-output algorithm
上傳時(shí)間: 2016-12-27
上傳用戶(hù):exxxds
This function calculates Akaike s final prediction error % estimate of the average generalization error. % % [FPE,deff,varest,H] = fpe(NetDef,W1,W2,PHI,Y,trparms) produces the % final prediction error estimate (fpe), the effective number of % weights in the network if the network has been trained with % weight decay, an estimate of the noise variance, and the Gauss-Newton % Hessian. %
標(biāo)簽: generalization calculates prediction function
上傳時(shí)間: 2014-12-03
上傳用戶(hù):maizezhen
% Train a two layer neural network with the Levenberg-Marquardt % method. % % If desired, it is possible to use regularization by % weight decay. Also pruned (ie. not fully connected) networks can % be trained. % % Given a set of corresponding input-output pairs and an initial % network, % [W1,W2,critvec,iteration,lambda]=marq(NetDef,W1,W2,PHI,Y,trparms) % trains the network with the Levenberg-Marquardt method. % % The activation functions can be either linear or tanh. The % network architecture is defined by the matrix NetDef which % has two rows. The first row specifies the hidden layer and the % second row specifies the output layer.
標(biāo)簽: Levenberg-Marquardt desired network neural
上傳時(shí)間: 2016-12-27
上傳用戶(hù):jcljkh
This function calculates Akaike s final prediction error % estimate of the average generalization error for network % models generated by NNARX, NNOE, NNARMAX1+2, or their recursive % counterparts. % % [FPE,deff,varest,H] = nnfpe(method,NetDef,W1,W2,U,Y,NN,trparms,skip,Chat) % produces the final prediction error estimate (fpe), the effective number % of weights in the network if it has been trained with weight decay, % an estimate of the noise variance, and the Gauss-Newton Hessian. %
標(biāo)簽: generalization calculates prediction function
上傳時(shí)間: 2016-12-27
上傳用戶(hù):腳趾頭
【歐拉算法】 微分方程的本質(zhì)特征是方程中含有導(dǎo)數(shù)項(xiàng),數(shù)值解法的第一步就是...歐拉(Euler)算法是數(shù)值求解中最基本、最簡(jiǎn)單的方法,但其求解精度較低,一般不在...對(duì)于常微分方程: dy/dx=f(x,y),x∈[a,b] y(a)=y0 可以將區(qū)
上傳時(shí)間: 2014-01-09
上傳用戶(hù):www240697738
#include "iostream.h" #include "iomanip.h" #define N 20 //學(xué)習(xí)樣本個(gè)數(shù) #define IN 1 //輸入層神經(jīng)元數(shù)目 #define HN 8 //隱層神經(jīng)元數(shù)目 #define ON 1 //輸出層神經(jīng)元數(shù)目 double P[IN] //單個(gè)樣本輸入數(shù)據(jù) double T[ON] //單個(gè)樣本教師數(shù)據(jù) double W[HN][IN] //輸入層至隱層權(quán)值 double V[ON][HN] //隱層至輸出層權(quán)值 double X[HN] //隱層的輸入 double Y[ON] //輸出層的輸入 double H[HN] //隱層的輸出
標(biāo)簽: define include iostream iomanip
上傳時(shí)間: 2014-01-01
上傳用戶(hù):凌云御清風(fēng)
三維曲線(xiàn)曲面比較演示系統(tǒng)程序設(shè)計(jì) 設(shè)計(jì)一個(gè)圖形用戶(hù)界面(GUI)演示常見(jiàn)的三維函數(shù)圖形,至少包含“三維繪圖” 、“選項(xiàng)” 、“退出”等菜單,三維繪圖的包括:參數(shù)方程x=e-t/20cos(t), y= e-t/20sin(t),z=t其中t 為0到2π、參數(shù)方程x=t,y=t2,z=t3其中t為0到1之間(在同一圖形界面中分別繪制它們的三維曲面和三維曲線(xiàn)圖)。“選項(xiàng)”菜單主要包括:網(wǎng)格開(kāi)關(guān),圖例開(kāi)關(guān),坐標(biāo)邊框開(kāi)關(guān),色度空間選擇菜單,曲線(xiàn)顏色菜單。
標(biāo)簽: GUI 比較 圖形用戶(hù)界面 函數(shù)
上傳時(shí)間: 2017-01-10
上傳用戶(hù):hasan2015
蟲(chóng)蟲(chóng)下載站版權(quán)所有 京ICP備2021023401號(hào)-1