經典c程序100例==1--10 【程序1】 題目:有1、2、3、4個數字,能組成多少個互不相同且無重復數字的三位數?都是多少? 1.程序分析:可填在百位、十位、個位的數字都是1、2、3、4。組成所有的排列后再去 掉不滿足條件的排列。 2.程序源代碼: main() { int i,j,k printf("\n") for(i=1 i<5 i++) /*以下為三重循環*/ for(j=1 j<5 j++) for (k=1 k<5 k++) { if (i!=k&&i!=j&&j!=k) /*確保i、j、k三位互不相同*/ printf("%d,%d,%d\n",i,j,k) }
上傳時間: 2014-01-07
上傳用戶:lizhizheng88
給定n 個整數a ,a , ,an 1 2 組成的序列, a n i | |£ ,1 £ i £ n。如果對于i £ j ,有 0 = å = j k i k a ,則稱序列區間i i j a , a , , a +1 為一個零和區間,相應的區間長度為j-i+1。
上傳時間: 2015-07-23
上傳用戶:zhangzhenyu
給定n 個整數a ,a , ,an 1 2 組成的序列, a n i | |£ ,1 £ i £ n。如果對于i £ j ,有 0 = å = j k i k a ,則稱序列區間i i j a , a , , a +1 為一個零和區間,相應的區間長度為j-i+1。
上傳時間: 2013-12-21
上傳用戶:偷心的海盜
經典C語言程序設計100例1-10 如【程序1】 題目:有1、2、3、4個數字,能組成多少個互不相同且無重復數字的三位數?都是多少? 1.程序分析:可填在百位、十位、個位的數字都是1、2、3、4。組成所有的排列后再去 掉不滿足條件的排列。 2.程序源代碼: main() { int i,j,k printf("\n") for(i=1 i<5 i++) ?。?以下為三重循環*/ for(j=1 j<5 j++) for (k=1 k<5 k++) { if (i!=k&&i!=j&&j!=k) /*確保i、j、k三位互不相同*/ printf("%d,%d,%d\n",i,j,k) } }
上傳時間: 2013-12-14
上傳用戶:hfmm633
介紹回歸問題中高斯過程的應用,C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning,
上傳時間: 2017-07-25
上傳用戶:skfreeman
實驗源代碼 //Warshall.cpp #include<stdio.h> void warshall(int k,int n) { int i , j, t; int temp[20][20]; for(int a=0;a<k;a++) { printf("請輸入矩陣第%d 行元素:",a); for(int b=0;b<n;b++) { scanf ("%d",&temp[a][b]); } } for(i=0;i<k;i++){ for( j=0;j<k;j++){ if(temp[ j][i]==1) { for(t=0;t<n;t++) { temp[ j][t]=temp[i][t]||temp[ j][t]; } } } } printf("可傳遞閉包關系矩陣是:\n"); for(i=0;i<k;i++) { for( j=0;j<n;j++) { printf("%d", temp[i][ j]); } printf("\n"); } } void main() { printf("利用 Warshall 算法求二元關系的可傳遞閉包\n"); void warshall(int,int); int k , n; printf("請輸入矩陣的行數 i: "); scanf("%d",&k); 四川大學實驗報告 printf("請輸入矩陣的列數 j: "); scanf("%d",&n); warshall(k,n); }
上傳時間: 2016-06-27
上傳用戶:梁雪文以
#include "iostream" using namespace std; class Matrix { private: double** A; //矩陣A double *b; //向量b public: int size; Matrix(int ); ~Matrix(); friend double* Dooli(Matrix& ); void Input(); void Disp(); }; Matrix::Matrix(int x) { size=x; //為向量b分配空間并初始化為0 b=new double [x]; for(int j=0;j<x;j++) b[j]=0; //為向量A分配空間并初始化為0 A=new double* [x]; for(int i=0;i<x;i++) A[i]=new double [x]; for(int m=0;m<x;m++) for(int n=0;n<x;n++) A[m][n]=0; } Matrix::~Matrix() { cout<<"正在析構中~~~~"<<endl; delete b; for(int i=0;i<size;i++) delete A[i]; delete A; } void Matrix::Disp() { for(int i=0;i<size;i++) { for(int j=0;j<size;j++) cout<<A[i][j]<<" "; cout<<endl; } } void Matrix::Input() { cout<<"請輸入A:"<<endl; for(int i=0;i<size;i++) for(int j=0;j<size;j++){ cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl; cin>>A[i][j]; } cout<<"請輸入b:"<<endl; for(int j=0;j<size;j++){ cout<<"第"<<j+1<<"個:"<<endl; cin>>b[j]; } } double* Dooli(Matrix& A) { double *Xn=new double [A.size]; Matrix L(A.size),U(A.size); //分別求得U,L的第一行與第一列 for(int i=0;i<A.size;i++) U.A[0][i]=A.A[0][i]; for(int j=1;j<A.size;j++) L.A[j][0]=A.A[j][0]/U.A[0][0]; //分別求得U,L的第r行,第r列 double temp1=0,temp2=0; for(int r=1;r<A.size;r++){ //U for(int i=r;i<A.size;i++){ for(int k=0;k<r-1;k++) temp1=temp1+L.A[r][k]*U.A[k][i]; U.A[r][i]=A.A[r][i]-temp1; } //L for(int i=r+1;i<A.size;i++){ for(int k=0;k<r-1;k++) temp2=temp2+L.A[i][k]*U.A[k][r]; L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r]; } } cout<<"計算U得:"<<endl; U.Disp(); cout<<"計算L的:"<<endl; L.Disp(); double *Y=new double [A.size]; Y[0]=A.b[0]; for(int i=1;i<A.size;i++ ){ double temp3=0; for(int k=0;k<i-1;k++) temp3=temp3+L.A[i][k]*Y[k]; Y[i]=A.b[i]-temp3; } Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1]; for(int i=A.size-1;i>=0;i--){ double temp4=0; for(int k=i+1;k<A.size;k++) temp4=temp4+U.A[i][k]*Xn[k]; Xn[i]=(Y[i]-temp4)/U.A[i][i]; } return Xn; } int main() { Matrix B(4); B.Input(); double *X; X=Dooli(B); cout<<"~~~~解得:"<<endl; for(int i=0;i<B.size;i++) cout<<"X["<<i<<"]:"<<X[i]<<" "; cout<<endl<<"呵呵呵呵呵"; return 0; }
標簽: 道理特分解法
上傳時間: 2018-05-20
上傳用戶:Aa123456789
function [R,k,b] = msc(A) % 多元散射校正 % 輸入待處理矩陣,通過多元散射校正,求得校正后的矩陣 %% 獲得矩陣行列數 [m,n] = size(A); %% 求平均光譜 M = mean(A,2); %% 利用最小二乘法求每一列的斜率k和截距b for i = 1:n a = polyfit(M,A(:,i),1); if i == 1 k = a(1); b = a(2); else k = [k,a(1)]; b = [b,a(2)]; end end %% 求得結果 for i = 1:n Ai = (A(:,i)-b(i))/k(i); if i == 1 R = Ai; else R = [R,Ai]; end end
上傳時間: 2020-03-12
上傳用戶:15275387185
萬用表測量技巧用萬用表檢測彩色電視機開關電源
標簽: 萬用表
上傳時間: 2021-11-27
上傳用戶:
華為開關電源電感器設計 正激式開關電源變壓器設計步驟
上傳時間: 2021-12-03
上傳用戶:fliang