亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

阻抗測量

阻抗測量是對加在系統、電路或元件上的正弦電壓U和流過它們的電流I之比的測量。阻抗測量屬于電信基本參數測量的一種。
  • 數顯式測量電路PCB圖

    數顯式測量電路pcb簡圖

    標簽: PCB 數顯式 測量電路

    上傳時間: 2013-10-12

    上傳用戶:mickey008

  • Polar阻抗計算軟件

    阻抗減少軟件

    標簽: Polar 阻抗計算 軟件

    上傳時間: 2013-10-12

    上傳用戶:daguogai

  • 差分阻抗

    當你認為你已經掌握了PCB 走線的特征阻抗Z0,緊接著一份數據手冊告訴你去設計一個特定的差分阻抗。令事情變得更困難的是,它說:“……因為兩根走線之間的耦合可以降低有效阻抗,使用50Ω的設計規則來得到一個大約80Ω的差分阻抗!”這的確讓人感到困惑!這篇文章向你展示什么是差分阻抗。除此之外,還討論了為什么是這樣,并且向你展示如何正確地計算它。 單線:圖1(a)演示了一個典型的單根走線。其特征阻抗是Z0,其上流經的電流為i。沿線任意一點的電壓為V=Z0*i( 根據歐姆定律)。一般情況,線對:圖1(b)演示了一對走線。線1 具有特征阻抗Z11,與上文中Z0 一致,電流i1。線2具有類似的定義。當我們將線2 向線1 靠近時,線2 上的電流開始以比例常數k 耦合到線1 上。類似地,線1 的電流i1 開始以同樣的比例常數耦合到線2 上。每根走線上任意一點的電壓,還是根據歐姆定律,

    標簽: 差分阻抗

    上傳時間: 2013-10-20

    上傳用戶:lwwhust

  • Hyperlynx仿真應用:阻抗匹配

    Hyperlynx仿真應用:阻抗匹配.下面以一個電路設計為例,簡單介紹一下PCB仿真軟件在設計中的使用。下面是一個DSP硬件電路部分元件位置關系(原理圖和PCB使用PROTEL99SE設計),其中DRAM作為DSP的擴展Memory(64位寬度,低8bit還經過3245接到FLASH和其它芯片),DRAM時鐘頻率133M。因為頻率較高,設計過程中我們需要考慮DRAM的數據、地址和控制線是否需加串阻。下面,我們以數據線D0仿真為例看是否需要加串阻。模型建立首先需要在元件公司網站下載各器件IBIS模型。然后打開Hyperlynx,新建LineSim File(線路仿真—主要用于PCB前仿真驗證)新建好的線路仿真文件里可以看到一些虛線勾出的傳輸線、芯片腳、始端串阻和上下拉終端匹配電阻等。下面,我們開始導入主芯片DSP的數據線D0腳模型。左鍵點芯片管腳處的標志,出現未知管腳,然后再按下圖的紅線所示線路選取芯片IBIS模型中的對應管腳。 3http://bbs.elecfans.com/ 電子技術論壇 http://www.elecfans.com 電子發燒友點OK后退到“ASSIGN Models”界面。選管腳為“Output”類型。這樣,一樣管腳的配置就完成了。同樣將DRAM的數據線對應管腳和3245的對應管腳IBIS模型加上(DSP輸出,3245高阻,DRAM輸入)。下面我們開始建立傳輸線模型。左鍵點DSP芯片腳相連的傳輸線,增添傳輸線,然后右鍵編輯屬性。因為我們使用四層板,在表層走線,所以要選用“Microstrip”,然后點“Value”進行屬性編輯。這里,我們要編輯一些PCB的屬性,布線長度、寬度和層間距等,屬性編輯界面如下:再將其它傳輸線也添加上。這就是沒有加阻抗匹配的仿真模型(PCB最遠直線間距1.4inch,對線長為1.7inch)。現在模型就建立好了。仿真及分析下面我們就要為各點加示波器探頭了,按照下圖紅線所示路徑為各測試點增加探頭:為發現更多的信息,我們使用眼圖觀察。因為時鐘是133M,數據單沿采樣,數據翻轉最高頻率為66.7M,對應位寬為7.58ns。所以設置參數如下:之后按照芯片手冊制作眼圖模板。因為我們最關心的是接收端(DRAM)信號,所以模板也按照DRAM芯片HY57V283220手冊的輸入需求設計。芯片手冊中要求輸入高電平VIH高于2.0V,輸入低電平VIL低于0.8V。DRAM芯片的一個NOTE里指出,芯片可以承受最高5.6V,最低-2.0V信號(不長于3ns):按下邊紅線路徑配置眼圖模板:低8位數據線沒有串阻可以滿足設計要求,而其他的56位都是一對一,經過仿真沒有串阻也能通過。于是數據線不加串阻可以滿足設計要求,但有一點需注意,就是寫數據時因為存在回沖,DRAM接收高電平在位中間會回沖到2V。因此會導致電平判決裕量較小,抗干擾能力差一些,如果調試過程中發現寫RAM會出錯,還需要改版加串阻。

    標簽: Hyperlynx 仿真 阻抗匹配

    上傳時間: 2013-11-05

    上傳用戶:dudu121

  • 磁芯電感器的諧波失真分析

    磁芯電感器的諧波失真分析 摘  要:簡述了改進鐵氧體軟磁材料比損耗系數和磁滯常數ηB,從而降低總諧波失真THD的歷史過程,分析了諸多因數對諧波測量的影響,提出了磁心性能的調控方向。 關鍵詞:比損耗系數, 磁滯常數ηB ,直流偏置特性DC-Bias,總諧波失真THD  Analysis on THD of the fer rite co res u se d i n i nductancShi Yan Nanjing Finemag Technology Co. Ltd., Nanjing 210033   Abstract:    Histrory of decreasing THD by improving the ratio loss coefficient and hysteresis constant of soft magnetic ferrite is briefly narrated. The effect of many factors which affect the harmonic wave testing is analysed. The way of improving the performance of ferrite cores is put forward.  Key words: ratio loss coefficient,hysteresis constant,DC-Bias,THD  近年來,變壓器生產廠家和軟磁鐵氧體生產廠家,在電感器和變壓器產品的總諧波失真指標控制上,進行了深入的探討和廣泛的合作,逐步弄清了一些似是而非的問題。從工藝技術上采取了不少有效措施,促進了質量問題的迅速解決。本文將就此熱門話題作一些粗淺探討。  一、 歷史回顧 總諧波失真(Total harmonic distortion) ,簡稱THD,并不是什么新的概念,早在幾十年前的載波通信技術中就已有嚴格要求<1>。1978年郵電部公布的標準YD/Z17-78“載波用鐵氧體罐形磁心”中,規定了高μQ材料制作的無中心柱配對罐形磁心詳細的測試電路和方法。如圖一電路所示,利用LC組成的150KHz低通濾波器在高電平輸入的情況下測量磁心產生的非線性失真。這種相對比較的實用方法,專用于無中心柱配對罐形磁心的諧波衰耗測試。 這種磁心主要用于載波電報、電話設備的遙測振蕩器和線路放大器系統,其非線性失真有很嚴格的要求。  圖中  ZD   —— QF867 型阻容式載頻振蕩器,輸出阻抗 150Ω, Ld47 —— 47KHz 低通濾波器,阻抗 150Ω,阻帶衰耗大于61dB,       Lg88 ——并聯高低通濾波器,阻抗 150Ω,三次諧波衰耗大于61dB Ld88 ——并聯高低通濾波器,阻抗 150Ω,三次諧波衰耗大于61dB FD   —— 30~50KHz 放大器, 阻抗 150Ω, 增益不小于 43 dB,三次諧波衰耗b3(0)≥91 dB, DP  —— Qp373 選頻電平表,輸入高阻抗, L ——被測無心罐形磁心及線圈, C  ——聚苯乙烯薄膜電容器CMO-100V-707APF±0.5%,二只。 測量時,所配用線圈應用絲包銅電磁線SQJ9×0.12(JB661-75)在直徑為16.1mm的線架上繞制 120 匝, (線架為一格) , 其空心電感值為 318μH(誤差1%) 被測磁心配對安裝好后,先調節振蕩器頻率為 36.6~40KHz,  使輸出電平值為+17.4 dB, 即選頻表在 22′端子測得的主波電平 (P2)為+17.4 dB,然后在33′端子處測得輸出的三次諧波電平(P3), 則三次諧波衰耗值為:b3(+2)= P2+S+ P3 式中:S 為放大器增益dB 從以往的資料引證, 就可以發現諧波失真的測量是一項很精細的工作,其中測量系統的高、低通濾波器,信號源和放大器本身的三次諧波衰耗控制很嚴,阻抗必須匹配,薄膜電容器的非線性也有相應要求。濾波器的電感全由不帶任何磁介質的大空心線圈繞成,以保證本身的“潔凈” ,不至于造成對磁心分選的誤判。 為了滿足多路通信整機的小型化和穩定性要求, 必須生產低損耗高穩定磁心。上世紀 70 年代初,1409 所和四機部、郵電部各廠,從工藝上改變了推板空氣窯燒結,出窯后經真空罐冷卻的落后方式,改用真空爐,并控制燒結、冷卻氣氛。技術上采用共沉淀法攻關試制出了μQ乘積 60 萬和 100 萬的低損耗高穩定材料,在此基礎上,還實現了高μ7000~10000材料的突破,從而大大縮短了與國外企業的技術差異。當時正處于通信技術由FDM(頻率劃分調制)向PCM(脈沖編碼調制) 轉換時期, 日本人明石雅夫發表了μQ乘積125 萬為 0.8×10 ,100KHz)的超優鐵氧體材料<3>,其磁滯系數降為優鐵

    標簽: 磁芯 電感器 諧波失真

    上傳時間: 2014-12-24

    上傳用戶:7891

  • 阻抗匹配

    阻抗匹配  阻抗匹配(Impedance matching)是微波電子學里的一部分,主要用于傳輸線上,來達至所有高頻的微波信號皆能傳至負載點的目的,不會有信號反射回來源點,從而提升能源效益。  大體上,阻抗匹配有兩種,一種是透過改變阻抗力(lumped-circuit matching),另一種則是調整傳輸線的波長(transmission line matching)。  要匹配一組線路,首先把負載點的阻抗值,除以傳輸線的特性阻抗值來歸一化,然后把數值劃在史密夫圖表上。  把電容或電感與負載串聯起來,即可增加或減少負載的阻抗值,在圖表上的點會沿著代表實數電阻的圓圈走動。如果把電容或電感接地,首先圖表上的點會以圖中心旋轉180度,然后才沿電阻圈走動,再沿中心旋轉180度。重覆以上方法直至電阻值變成1,即可直接把阻抗力變為零完成匹配。  由負載點至來源點加長傳輸線,在圖表上的圓點會沿著圖中心以逆時針方向走動,直至走到電阻值為1的圓圈上,即可加電容或電感把阻抗力調整為零,完成匹配.........

    標簽: 阻抗匹配

    上傳時間: 2013-11-13

    上傳用戶:ddddddos

  • 傳輸線理論與阻抗匹配

    傳輸線理論與阻抗匹配 傳輸線理論

    標簽: 傳輸線 阻抗匹配

    上傳時間: 2013-10-18

    上傳用戶:wuyuying

  • 阻抗特性設計要求

    阻抗特性設計要求

    標簽: 阻抗特性

    上傳時間: 2013-11-06

    上傳用戶:woshinimiaoye

  • DN510 - 具儀表級準確度的系統監視器用于測量相對濕度

    LTC®2991 系統監視器內置了這種精細復雜的電路,它能把一個小信號晶體管變成一個準確的溫度傳感器。該器件不僅可在測量遠端二極管溫度時提供 ±1°C的準確度,還能測量其自身的電源電壓、單端電壓(0 至 VCC) 和差分電壓 (±325mV)。

    標簽: 510 DN 儀表 準確度

    上傳時間: 2013-11-05

    上傳用戶:gps6888

  • 模塊電源功能性參數指標及測試方法

      模塊電源的電氣性能是通過一系列測試來呈現的,下列為一般的功能性測試項目,詳細說明如下: 電源調整率(Line Regulation) 負載調整率(Load Regulation) 綜合調整率(Conmine Regulation) 輸出漣波及雜訊(Ripple & Noise) 輸入功率及效率(Input Power, Efficiency) 動態負載或暫態負載(Dynamic or Transient Response) 起動(Set-Up)及保持(Hold-Up)時間 常規功能(Functions)測試 1. 電源調整率   電源調整率的定義為電源供應器于輸入電壓變化時提供其穩定輸出電壓的能力。測試步驟如下:于待測電源供應器以正常輸入電壓及負載狀況下熱機穩定后,分別于低輸入電壓(Min),正常輸入電壓(Normal),及高輸入電壓(Max)下測量并記錄其輸出電壓值。 電源調整率通常以一正常之固定負載(Nominal Load)下,由輸入電壓變化所造成其輸出電壓偏差率(deviation)的百分比,如下列公式所示:   [Vo(max)-Vo(min)] / Vo(normal) 2. 負載調整率   負載調整率的定義為開關電源于輸出負載電流變化時,提供其穩定輸出電壓的能力。測試步驟如下:于待測電源供應器以正常輸入電壓及負載狀況下熱機穩定后,測量正常負載下之輸出電壓值,再分別于輕載(Min)、重載(Max)負載下,測量并記錄其輸出電壓值(分別為Vo(max)與Vo(min)),負載調整率通常以正常之固定輸入電壓下,由負載電流變化所造成其輸出電壓偏差率的百分比,如下列公式所示:   [Vo(max)-Vo(min)] / Vo(normal)    3. 綜合調整率   綜合調整率的定義為電源供應器于輸入電壓與輸出負載電流變化時,提供其穩定輸出電壓的能力。這是電源調整率與負載調整率的綜合,此項測試系為上述電源調整率與負載調整率的綜合,可提供對電源供應器于改變輸入電壓與負載狀況下更正確的性能驗證。 綜合調整率用下列方式表示:于輸入電壓與輸出負載電流變化下,其輸出電壓之偏差量須于規定之上下限電壓范圍內(即輸出電壓之上下限絕對值以內)或某一百分比界限內。 4. 輸出雜訊   輸出雜訊(PARD)系指于輸入電壓與輸出負載電流均不變的情況下,其平均直流輸出電壓上的周期性與隨機性偏差量的電壓值。輸出雜訊是表示在經過穩壓及濾波后的直流輸出電壓上所有不需要的交流和噪聲部份(包含低頻之50/60Hz電源倍頻信號、高于20 KHz之高頻切換信號及其諧波,再與其它之隨機性信號所組成)),通常以mVp-p峰對峰值電壓為單位來表示。   一般的開關電源的規格均以輸出直流輸出電壓的1%以內為輸出雜訊之規格,其頻寬為20Hz到20MHz。電源實際工作時最惡劣的狀況(如輸出負載電流最大、輸入電源電壓最低等),若電源供應器在惡劣環境狀況下,其輸出直流電壓加上雜訊后之輸出瞬時電壓,仍能夠維持穩定的輸出電壓不超過輸出高低電壓界限情形,否則將可能會導致電源電壓超過或低于邏輯電路(如TTL電路)之承受電源電壓而誤動作,進一步造成死機現象。   同時測量電路必須有良好的隔離處理及阻抗匹配,為避免導線上產生不必要的干擾、振鈴和駐波,一般都采用雙同軸電纜并以50Ω于其端點上,并使用差動式量測方法(可避免地回路之雜訊電流),來獲得正確的測量結果。 5. 輸入功率與效率   電源供應器的輸入功率之定義為以下之公式:   True Power = Pav(watt) = Vrms x Arms x Power Factor 即為對一周期內其輸入電壓與電流乘積之積分值,需注意的是Watt≠VrmsArms而是Watt=VrmsArmsxP.F.,其中P.F.為功率因素(Power Factor),通常無功率因素校正電路電源供應器的功率因素在0.6~0.7左右,其功率因素為1~0之間。   電源供應器的效率之定義為為輸出直流功率之總和與輸入功率之比值。效率提供對電源供應器正確工作的驗證,若效率超過規定范圍,即表示設計或零件材料上有問題,效率太低時會導致散熱增加而影響其使用壽命。 6. 動態負載或暫態負載   一個定電壓輸出的電源,于設計中具備反饋控制回路,能夠將其輸出電壓連續不斷地維持穩定的輸出電壓。由于實際上反饋控制回路有一定的頻寬,因此限制了電源供應器對負載電流變化時的反應。若控制回路輸入與輸出之相移于增益(Unity Gain)為1時,超過180度,則電源供應器之輸出便會呈現不穩定、失控或振蕩之現象。實際上,電源供應器工作時的負載電流也是動態變化的,而不是始終維持不變(例如硬盤、軟驅、CPU或RAM動作等),因此動態負載測試對電源供應器而言是極為重要的。可編程序電子負載可用來模擬電源供應器實際工作時最惡劣的負載情況,如負載電流迅速上升、下降之斜率、周期等,若電源供應器在惡劣負載狀況下,仍能夠維持穩定的輸出電壓不產生過高激(Overshoot)或過低(Undershoot)情形,否則會導致電源之輸出電壓超過負載組件(如TTL電路其輸出瞬時電壓應介于4.75V至5.25V之間,才不致引起TTL邏輯電路之誤動作)之承受電源電壓而誤動作,進一步造成死機現象。 7. 啟動時間與保持時間   啟動時間為電源供應器從輸入接上電源起到其輸出電壓上升到穩壓范圍內為止的時間,以一輸出為5V的電源供應器為例,啟動時間為從電源開機起到輸出電壓達到4.75V為止的時間。   保持時間為電源供應器從輸入切斷電源起到其輸出電壓下降到穩壓范圍外為止的時間,以一輸出為5V的電源供應器為例,保持時間為從關機起到輸出電壓低于4.75V為止的時間,一般值為17ms或20ms以上,以避免電力公司供電中于少了半周或一周之狀況下而受影響。    8. 其它 在電源具備一些特定保護功能的前提下,還需要進行保護功能測試,如過電壓保護(OVP)測試、短路保護測試、過功保護等

    標簽: 模塊電源 參數 指標 測試方法

    上傳時間: 2013-10-22

    上傳用戶:zouxinwang

亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
久久精品99久久香蕉国产色戒| 久久精品国产清自在天天线| 欧美高清在线精品一区| 久久看片网站| 欧美理论大片| 国产欧美精品在线播放| 在线观看亚洲精品| 一区二区三区视频观看| 夜夜嗨av色一区二区不卡| 亚洲一区二区久久| 久久久久久尹人网香蕉| 国产精品久久久| 一区在线播放视频| 中日韩高清电影网| 免费视频亚洲| 韩国一区电影| 亚洲欧美清纯在线制服| 欧美日本在线观看| 日韩视频永久免费观看| 久久久久一区| 国产主播精品在线| 亚洲一区二区三区免费视频| 欧美精品一区二区三| 永久免费视频成人| 久久夜色精品国产欧美乱极品| 国产精品免费视频xxxx | 欧美激情无毛| 亚洲电影下载| 美女久久一区| 亚洲国产日韩一区二区| 奶水喷射视频一区| 亚洲美女在线视频| 欧美日韩精品免费在线观看视频| 亚洲国产一区二区三区青草影视| 美女在线一区二区| 亚洲国产综合在线| 欧美久久成人| 亚洲一区国产视频| 国产精品尤物| 欧美专区日韩视频| 亚洲国产免费| 国产精品盗摄久久久| 久久av红桃一区二区小说| 国产曰批免费观看久久久| 久久久精品国产免费观看同学| 国产自产精品| 欧美日韩亚洲国产精品| 久久av一区二区三区| 亚洲美女电影在线| 国产日韩在线看| 欧美另类一区二区三区| 久久成人精品视频| 一区二区久久久久| 亚洲电影av| 国产伦精品一区二区三区四区免费 | 国产精品劲爆视频| 裸体一区二区三区| 亚洲欧美日韩精品久久奇米色影视| 很黄很黄激情成人| 国产精品久久久久久久免费软件 | 欧美午夜不卡视频| 久久综合一区| 午夜在线播放视频欧美| 日韩视频在线观看| 亚洲日本电影| 亚洲人线精品午夜| 亚洲品质自拍| 亚洲激情av| 亚洲日韩视频| 在线视频精品| 日韩视频在线观看国产| 亚洲免费播放| 亚洲欧美日韩成人| 欧美在线黄色| 牛牛精品成人免费视频| 欧美人体xx| 国产女人水真多18毛片18精品视频 | 久久国产精品久久久| 久久一区二区三区国产精品| 久久久久久网址| 欧美日韩综合精品| 国产日韩一区二区三区| 亚洲国产成人久久综合| 一区二区三区欧美在线观看| 亚洲一品av免费观看| 久久三级福利| 欧美日韩在线综合| 欧美激情一区二区三区在线视频| 免费观看不卡av| 国产精品magnet| 国产一区日韩二区欧美三区| 国产综合第一页| 在线国产精品播放| 亚洲网站在线看| 久久精品伊人| 欧美三级欧美一级| 狠狠色狠狠色综合日日tαg| 亚洲美女毛片| 久久综合狠狠综合久久综合88 | 伊人色综合久久天天| 亚洲美女精品成人在线视频| 亚洲欧美伊人| 欧美午夜不卡视频| 亚洲激情一区二区| 欧美在线观看网站| 国产视频一区二区在线观看 | 久久精品一区二区三区不卡| 国产精品日产欧美久久久久| 亚洲人成高清| 欧美紧缚bdsm在线视频| 亚洲激情视频在线观看| 久久精品女人| 狠狠色丁香婷婷综合影院| 亚洲欧美综合| 国产日产亚洲精品系列| 久久久91精品国产一区二区精品| 欧美午夜视频在线观看| 中文国产成人精品久久一| 欧美视频一二三区| 亚洲欧美一区二区三区极速播放| 国产精品青草久久| 久久久国产视频91| 亚洲人成高清| 国产精品福利av| 欧美一级黄色录像| 亚洲国产欧美一区二区三区丁香婷| 久久精品中文字幕一区| 亚洲国产精品999| 欧美三级第一页| 久久蜜臀精品av| 亚洲精品国产精品国自产在线| 欧美日韩激情小视频| 欧美一区=区| 日韩视频在线观看| 亚洲一级黄色| 国产亚洲精品成人av久久ww| 久久精品国产精品亚洲综合| 亚洲欧洲一区二区在线播放| 国产精品亚洲综合一区在线观看 | 国产精品一区二区在线| 久久久中精品2020中文| 亚洲午夜高清视频| 亚洲国产精品久久久久婷婷老年| 欧美三区在线视频| 欧美精品久久久久久久久老牛影院 | 一区福利视频| 国产精品视频九色porn| 欧美国产在线电影| 久久综合久久综合这里只有精品 | 先锋影音久久久| aa级大片欧美| 亚洲精品色婷婷福利天堂| 亚洲二区在线观看| 最新中文字幕一区二区三区| 一区免费观看视频| 在线播放日韩专区| 亚洲国产高清aⅴ视频| 一区在线视频| 日韩视频在线永久播放| 一区二区三区精品国产| 制服丝袜激情欧洲亚洲| 国产一区二区三区奇米久涩| 欧美日韩精品| 国产精品久久久久9999高清| 国产精品日日摸夜夜添夜夜av| 欧美日韩一区二区三区在线看| 欧美日韩精品在线观看| 国产精品日韩高清| 一区二区三区在线免费视频 | 国产精品久久久久天堂| 国产专区欧美专区| 亚洲国产精品成人| 亚洲视频久久| 久久全国免费视频| 欧美日韩国产在线播放| 国产欧美一区二区精品忘忧草| 黄色成人在线网站| 99精品国产福利在线观看免费| 亚洲欧美日本国产有色| 麻豆国产va免费精品高清在线| 欧美日韩国产免费| 国语自产精品视频在线看一大j8| 亚洲麻豆av| 精品999网站| 亚洲欧洲另类国产综合| 亚洲一区在线观看视频| 欧美日韩小视频| 亚洲高清av| 久久这里有精品视频| 国产精品夜色7777狼人 | 亚洲午夜在线观看| 欧美日韩人人澡狠狠躁视频| 亚洲福利视频在线| 久久精品日韩欧美| 黄色日韩在线| 欧美高清hd18日本| 国产精品一区在线观看你懂的| 99在线精品视频| 国产精品自拍一区| 久久国产精彩视频|