亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

降壓型<b>DC-DC</b>

  • 應用于降壓型開關電源的ldo設計與分析

    2009年上半年統計中,計算機類、消費類、網絡通信類三大領域仍然占中國電源管理芯片市場近80%的市場份額,其中網絡通信類市場最大,其市場份額都超過了30%。開關穩壓器和低電壓功率MOSFET將在未來五年內快速增長.ISuppli公司預測最強勁的增長將發生在數據處理領域,預計該領域的復合年增長率將達10%,未來五年將推動電源管理增長的市場將包括筆記本電腦(復合年增長18.7%)液晶顯示器/等離子(PDP)電視(復合年增長19.8%)、汽車安全與控制(復合年增長13.3%)和移動基礎設施設備與家用電器(增長9.5%)對于產品類型的發展,未來電源管理芯片PMU(復合產品)的市場份額將會有所提高,尤其在便攜設備中,PMU的發展將會更加快速.PMU與LDO和DC/DC這些單一功能產品不同,它可能同時集成多個LDO,DCIDC和充電管理等功能,在應用中往往相當于一個ASSP(專用標準產品),雖然不能完全解決某類設備的電源管理需求,但是能夠滿足一些相對通用的電源轉換需求,例如手機應用的PMU可能同時處理手機平臺下的LCD供電、存儲器供電、攝像頭供電、基帶處理器供電、USB接口以及電池充電管理等問題,這樣只需要再加上其它少量電源管理器件就可以解決整個手機的供電問題.LDO和DC/DC產品無疑是應用最大的兩類產品,不過對于多數LDO和中低端DCIDC產品來說,由于進入門檻相對較低以及參與競爭廠商眾多,未來價格還可能進一步下降".

    標簽: 開關電源 ldo

    上傳時間: 2022-06-23

    上傳用戶:

  • 基于LTspice的開關電源設計及仿真

    引言開關電源(SMPS:Switch Mode Power Supply)是利用現代電力電子技術,控制開關管開通和關斷的時問比率,維持穩定輸出電壓的一種電源·非隔離式DC/DC變換具有六種基本拓撲結構:降壓(Buck)變換器升壓(Boost)變換器極性反轉升降壓(Buck2Boost)變換器Cuk(Boost2Buck 聯)變換器Sepic變換器Zeta變換器[-1,與線性電源相比,開關電源具有體積小重量輕效率高自身抗干擾性強輸出電壓范圍寬模塊化等優點。LTspice IV是LT公司推出的SPICE電路仿真軟件,具有集成電路圖捕獲和波形觀測功能。LTspice IV內置新型SPIE元件,能快速進行SMPS交互式仿真,且無元件或節點數目的限制.LTspice IV雖然與開關模式電源設計配合使用,但它并不是SMPS專用型SPICE軟件,而是一款通用型SPICE-LTspice IV內置了LT公司新型SPARSE矩陣求解器,采用專有的并行處理方法,實現了對任務的高效并行處理"。

    標簽: ltspice 開關電源

    上傳時間: 2022-06-26

    上傳用戶:

  • 開關電源的原理與設計-張占松箸-557頁-18.5M.pdf

    本書系統論述DC-DC高頻開關電源的工作原理與工程設計方法。主要包括:PWM變換器和軟開關PWM變換器的電路拓撲、原理、控制、動態分析及穩定校正;功率開關元件MOSFET、IGBT的特性及應用;智能功率開關變換器的原理與應用;磁性元件的特性與設計計算方法;開關電源中有源功率因數校正;同步整流與并聯均流等技術;PWM開關電源的可靠穩定性與制作問題;開關電源的數字仿真方法、計算機輔助優化設計和最優控制方法等。

    標簽: 18.5 557 開關電源

    上傳時間: 2013-04-24

    上傳用戶:13215175592

  • 永磁直線同步電機控制技術的研究.rar

    直線電動機直接驅動運動設備,省略了機械轉換機構,完全消除機械傳動元件的速度和加速度的物理極限,具有長行程、低慣量、高精度、快響應和高速度等特征,是先進加工中心的標志。90年代中期以后,直線驅動技術在超精密定位領域中得到了廣泛的應用,吸引了越來越多的研究機構和人員投入到這一領域中來。 永磁直線同步電機與普通的直線異步電機相比,具有效率高、輸出力矩大、體積小、易于控制等優點,極大地提高了進給系統的快速響應性和運動精度,成為新一代超精密機床中最具有代表的技術。永磁直線同步電機伺服控制系統將是當前和今后直線電機發展應用的一個方向。 本文以直線電機理論為依據,以現有的實驗設備及新的實驗方法為基礎,設計了永磁直線同步電動機控制系統,分析了永磁直線同步電機控制系統中存在的難點,并對直線電動機控制系統的控制性能進行了初步的實驗研究。 首先,介紹了永磁直線同步電機的結構、工作原理、相關控制策略,對直線電機控制難點進行了探討。在此基礎上,設計了永磁直線同步電機的控制系統的總體方案。 然后針對永磁直線同步電機控制系統的主要難點,分為位置檢測技術,硬件系統設計和軟件系統設計三個方面對控制系統進行分析。根據永磁直線同步電機的特點,提出一種簡易的初始位置檢測方法,并設計了檢測電路。該方法基于線性霍爾元件,基本上不增加控制系統成本,安裝簡便,效果良好。在普通的三相逆變電路的直流側添加DC/DC電力電子電路。這樣的做的好處是根據系統需求輸出直流電壓,減少諧波。由于傳統的基于前后臺工作機制的電機控制軟件存在響應不及時、不穩定等弊病,提出了基于嵌入式實時操作系統機制上編寫電機控制軟件。 最后基于樣機和控制器做了相應試驗,分析了試驗結果,并提出了存在的問題和下一步的工作展望。

    標簽: 直線 同步電機 控制技術

    上傳時間: 2013-06-20

    上傳用戶:siguazgb

  • 基于DSP的光伏并網逆變系統的研究.rar

    隨著人類生活水平的提高,人們對能源的需求也日益提高。太陽能作為一種新型的綠色可再生能源,具有儲量大、利用經濟、清潔環保等優點。因此,太陽能的利用越來越受到人們的重視,而太陽能光伏發電技術的應用更是人們普遍關注的焦點。在不久的將來,太陽能光伏利用的主要形式將是并網發電系統。高性能的數字信號處理器芯片(DSP)的出現,使得一些先進的控制策略應用于光伏并網的控制成為可能。 一套基本的光伏并網發電系統一般是由太陽能電池板、太陽能控制器和逆變器構成。其中,太陽能控制器和逆變器是光伏并網系統的核心部分,本文針對如何提高太陽能光伏并網系統的轉換效率,從建模仿真方面對具有最大功率點跟蹤的光伏并網系統進行了研究。首先,概述了太陽能光伏發電系統的組成,介紹了目前我國太陽能光伏發電技術的應用。其次,使用MATLAB中的POWER SYSTEM BLOCKSETS 工具軟件建立了光伏并網發電系統的動態模型,并進行了仿真,給具體的硬件設計提供了極為有效的幫助。再次,通過比較幾種常用的DC/DC 變換器的工作原理,提出利用推挽式DC/DC 變換器實現轉換,對參數進行分析后建立了推挽式DC/DC 變換器的仿真模型。MPPT(最大功率點跟蹤)是光伏系統中經常遇見的問題。本文詳細地分析了常用的幾種MPPT 方案,并提出了幾種新的MPPT 方案。分析了基于DSP 芯片(TMS320F240)的光伏并網發電系統的控制設計思想。采用電網電壓前饋和電流跟蹤技術,建立了相關的控制模型,實現了網側電流正弦化和單位功率因數。最后本文結合實際系統給出了SPWM的設計方案和軟件流程圖。

    標簽: DSP 光伏并網 逆變系統

    上傳時間: 2013-07-22

    上傳用戶:jcljkh

  • 大功率DCDC變換器ARM控制系統及EMC的研究.rar

    本文對燃料電池車用DC/DC變換器的基本原理以及控制策略進行了較為詳盡的分析和討論,對基于ARM的DC/DC變換器控制系統的軟硬件設計作了較為詳盡的論述,對控制系統的電磁兼容作了詳細的研究并給出了提高電磁兼容能力的措施。本文介紹了本課題研究的背景,燃料電池電動汽車的特性和研究的目的與意義并分析了大功率DC/DC變換器主電路的拓撲結構、工作原理和電磁兼容環境。在此基礎上,從控制電路的最小系統、檢測系統、脈沖發生系統以及驅動電路、CAN通訊電路等方面重點討論了DC/DC變換器控制系統的硬件設計以及驅動電路的設計。本文在DC/DC變換器電感電流連續狀態空間小信號數學模型的基礎上,應用MATLAB軟件對大功率DC/DC變換器單環控制系統進行了建模和仿真分析,給出了具有實際指導意義的結論,設計了基于ARM控制系統的軟件結構并編寫了相應的軟件代碼。此外,本文從硬件和軟件兩個方面重點討論了控制系統的電磁兼容以及抗干擾措施。在系統硬件和軟件基礎上進行了功率試驗并給出了試驗結果以及今后改進的方向。

    標簽: DCDC ARM EMC

    上傳時間: 2013-05-28

    上傳用戶:思琦琦

  • 電動汽車用DCDC變換器主電路拓撲結構及電磁干擾的研究.rar

    本論文主要針對燃料電池電動轎車FCEV(Fuel Cell Electrical Vehicle)用DC/DC變換器主電路拓撲結構及電磁干擾產生與抑制問題進行研究.針對燃料電池偏軟的輸出特性和電動汽車對DC/DC變換器的體積小、重量輕和效率高的要求,本論文分析比較了帶變壓器的隔離式直流變換器和非隔離式直流變換器的主要優點和缺點,指出隔離式變換電路不適合于FCEV用DC/DC變換器主電路,非隔離式降壓(Buck)電路是最佳的主電路方案.在此基礎上,分析了非隔離式降壓(Buck)電路的工作原理和特點,運用模擬仿真軟件PSPICE仿真分析了Buck主電路參數,并在分析比較了各種磁性材料特性的基礎上對電感器進行了優化設計.本論文深入討論了DC/DC變換器中構成電磁干擾的三個主要因素:電磁干擾源、傳播途徑和敏感設備.分析了DC/DC變換器主電路中存在的主要干擾源及干擾產生的機理以及干擾傳播途徑,在此基礎上,重點討論了抑制各種干擾的方法及措施(包括傳導干擾抑制與輻射干擾抑制等),并給出了具體方案.本論文還從電磁兼容(EMC)測試的目的、組成等方面出發,對整個EMC測試進行了詳細的分析,提出了基于汽車電子EMC測試標準的DC/DC變換器EMC測試大綱,并對其中的試驗項目、試驗儀器、試驗場地、試驗設置、所應達到的等級進行了詳細的分析和介紹.

    標簽: DCDC 電動汽車 變換器

    上傳時間: 2013-08-03

    上傳用戶:20160811

  • 車用DCDC變換器主電路及其電磁兼容性研究.rar

    近年來,隨著汽車工業的迅速發展,環境污染、全球變暖、能源短缺的壓力使傳統的內燃機汽車面臨前所未有的挑戰,燃料電池電動汽車已成為汽車工業新的熱點。由于燃料電池輸出特性的特殊性,輸出端必須連接DC/DC變換器,使之與驅動器配合。因此,DC/DC變換器是燃料電池電動汽車的關鍵零部件之一。 本論文主要對燃料電池電動轎車FCEV(Fuel Cell Electric Vehicle)用DC/DC變換器的主電路拓撲結構、參數設計及電磁兼容(EMC)問題進行了研究。重點針對升降壓和雙向DC/DC變換器進行分析研究。 首先介紹分析了幾種傳統升降壓直流變換器的工作原理和優缺點。針對燃料電池的特性和電動汽車對升降壓DC/DC變換器的性能指標要求,分析比較了非隔離式直流變換器的一些優點和缺點,提出了Buck-Boost級聯的升降壓主電路方案并提出相關的控制策略。然后運用模擬仿真軟件MATLAB仿真分析了控制策略的正確性。 其次分析研究了雙向DC/DC變換器的應用與設計,綜合比較現有的各種隔離與非隔離方案,結合車用要求,選擇了非隔離式的Buck-Boost拓撲。針對其工作原理、特點進行了雙向DC/DC變換器主電路與控制電路的設計研究,重點研究其過渡過程的控制策略。在利用MATLAB進行各種過渡過程的仿真分析的基礎上,選取了最佳的過渡控制方案。并利用該控制策略編制DSP控制程序,制作了小功率1kW數字控制雙向DC/DC變換器。 最后深入討論了DC/DC變換器中的電磁兼容問題。分析了DC/DC變換器主電路中存在的主要干擾源、干擾產生的機理以及干擾傳播途徑,然后以此出發,重點討論了各種抑制電磁騷擾(EMI)和電磁抗干擾(EMS)的方法及措施,給出具體方案。

    標簽: DCDC 車用 變換器

    上傳時間: 2013-05-24

    上傳用戶:hanli8870

  • 能量回收系統中超級電容組均壓策略的研究.rar

    隨著能源危機日趨嚴重,新能源的開發與節能技術的研究日趨迫切,而新型儲能元件—超級電容器的應用為能量回收開辟了一條新的道路。 作為新型儲能器件,超級電容器擁有其它儲能器件無法比擬的優點—充放電速度快、功率密度高、使用壽命長。但由于其額定電壓很低,一般為1V~3V,因此使用時需多節串聯以達到實用電壓值,而電容單體參數不一致必然導致單體電壓不平衡。長此以往,勢必嚴重影響超級電容組壽命及其工作可靠性。 本文從超級電容器結構與工作原理入手,詳細闡述了其各種特性,分析和比較了目前存在的各種電壓均衡電路,確定了適合能量回收系統中超級電容組的電壓均衡策略,提出了如下兩種方法: 一種是運用飛渡電容轉移能量的思想,在飛渡電容與超級電容器之間加入DC/DC變換器,對超級電容器恒流充放電,保證了電壓均衡電路快速性。 針對超級電容器單體電壓低造成的DC/DC變換器恒流控制困難的問題,本文采用了新型開關電源芯片LTC3425及LTC3418實現了恒流輸出,仿真及試驗結果驗證了該方法的有效性。 另一種方法為基于變壓器的電壓均衡法,該方法引入全橋逆變器和高頻變壓器構成了一種新穎的電壓均衡電路。此方法容易獲得超級電容器串聯組平均電壓值,使得對低于平均電壓值的超級電容器充電非常方便。此方法以較低成本實現了電壓均衡目的,并通過仿真和試驗驗證了該方法的有效性。 以上兩種方法均通過能量內部轉移來完成電壓均衡,達到了較高的均衡效率,適合用于能量回收系統中超級電容組的電壓均衡。

    標簽: 能量 回收

    上傳時間: 2013-06-08

    上傳用戶:KIM66

  • 開關電源的EMI濾波器設計.rar

    由于能源危機和環境污染,世界各國均在投巨資發展電動汽車。燃料電池電動汽車成為電動汽車發展的“熱點”。大功率DC/DC變換器能夠改善燃料電池的輸出特性,是燃料電池轎車動力系統中關鍵的零部件。然而它作為一種BUCK形式的開關電源,主電路是很強的電磁干擾源,產生的干擾可能通過電源線進入到控制電路板,同時控制電路部分也要用小功率的開關電源進行穩壓,因此也可能產生開關噪聲經電源線向外傳輸。因此就必須在控制電路輸入端設計電磁干擾(Electromagnetic Interference,EMI)濾波器進行傳導干擾的抑制。 本論文首先討論了DC/DC變換器的工作原理,分析了變換器產生傳導干擾從而影響控制電路正常工作的原因。 其次全面、系統地闡述了EMI濾波器的相關理論,包括阻抗失配原則、人工電源網絡、濾波網絡、插入損耗等重要概念。接著研究了濾波元件的選取原則,并針對關鍵點之一—高頻性能展開了分析,借助仿真觀察了元件寄生參數的影響,提出了改善濾波器高頻性能的部分方法。 隨后介紹了濾波器的設計方法,除了介紹通用的設計方法外,著重分析了濾波器設計中的另一個關鍵點—噪聲源阻抗的影響、測量及估算,并在此基礎上系統地形成了基于源阻抗的設計方法,同時也考慮了濾波器與開關電源連接時可能出現的系統不穩定性問題,通過仿真分析提出解決方案。 然后闡述了EMI濾波器在工程應用中的各種注意事項。 最后結合DC/DC變換器控制電路的實際干擾情況,設計了EMI濾波器,使控制電路電源輸入端的傳導干擾基本下降到相關電磁兼容標準(CISPR25)的三級限值以下。

    標簽: EMI 開關電源 濾波器設計

    上傳時間: 2013-06-15

    上傳用戶:superhand

亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲主播在线播放| 在线看视频不卡| 国产精品久久久久国产a级| 亚洲欧美另类中文字幕| 一本色道久久88精品综合| 欧美国产精品人人做人人爱| 一本到12不卡视频在线dvd| 欧美精品福利| 欧美精品一区二区精品网| 一区二区三区日韩精品| 亚洲第一区在线观看| 国产精品热久久久久夜色精品三区| 国产精品久久久久久久9999| 欧美1区3d| 欧美精品九九| 欧美日韩国产成人| 欧美日韩在线一区二区三区| 欧美大香线蕉线伊人久久国产精品| 久久久九九九九| 美女图片一区二区| 欧美高清在线播放| 欧美精品一卡| 国产欧美 在线欧美| 国产亚洲亚洲| 亚洲国产综合视频在线观看| 亚洲私人黄色宅男| 久久婷婷国产麻豆91天堂| 亚洲图片在线观看| 午夜性色一区二区三区免费视频 | 国产精品一香蕉国产线看观看| 久久久视频精品| 久久夜色精品国产亚洲aⅴ| 欧美黄在线观看| 国产精品视频免费观看| 国内视频一区| 亚洲素人在线| 欧美大秀在线观看| 欧美激情一区| 国产一区二区三区四区老人| 亚洲国产裸拍裸体视频在线观看乱了中文 | 久久超碰97中文字幕| 欧美视频不卡中文| 亚洲成色www久久网站| 欧美一级电影久久| 欧美日韩国产成人在线免费| 黄网站色欧美视频| 欧美在线不卡视频| 国产老肥熟一区二区三区| 亚洲素人在线| 国产精品v欧美精品v日韩| 一区二区三区四区五区精品视频| 久久精品最新地址| 国产一区二区三区的电影 | 一本一本久久a久久精品综合麻豆 一本一本久久a久久精品牛牛影视 | 欧美专区日韩专区| 蜜臀久久99精品久久久久久9| 国产欧美日韩在线| 午夜日韩视频| 国模一区二区三区| 亚洲男人的天堂在线观看| 羞羞漫画18久久大片| 国产精品日韩欧美一区二区三区| 亚洲国产精品热久久| 欧美日韩国产麻豆| 亚洲视频一区二区免费在线观看| 国产精品白丝jk黑袜喷水| 亚洲图片你懂的| 亚洲国产黄色片| 午夜性色一区二区三区免费视频| 国产精品美女久久久久aⅴ国产馆| 国产欧美日韩综合| 久久中文字幕一区| 在线看国产日韩| 欧美日韩ab片| 久久爱www久久做| 亚洲福利在线视频| 欧美色道久久88综合亚洲精品| 国产精品老女人精品视频| 另类激情亚洲| 亚洲欧美国产制服动漫| 在线观看欧美激情| 国产欧美日韩综合一区在线观看 | 久久久精品久久久久| 国产欧美一区二区三区另类精品| 欧美sm极限捆绑bd| 欧美在线|欧美| 一片黄亚洲嫩模| 国产主播精品在线| 欧美午夜精品理论片a级按摩 | 亚洲一区影院| 亚洲第一区色| 韩日视频一区| 国产精品一区二区久久国产| 国产精品一区二区久久久| 欧美色偷偷大香| 国产一区在线看| 国产欧美日韩一区二区三区在线| 久久久精彩视频| 香蕉久久精品日日躁夜夜躁| 亚洲欧美日韩国产综合在线 | 国产精品国产福利国产秒拍| 国产无一区二区| 亚洲尤物视频在线| 欧美日韩国产色综合一二三四| 伊人春色精品| 欧美成黄导航| 亚洲啪啪91| 欧美精品在线观看播放| 亚洲国产婷婷| 欧美美女喷水视频| 一本久久精品一区二区| 国产精品久久激情| 欧美亚洲一区三区| 狠狠干综合网| 欧美另类高清视频在线| 亚洲中字黄色| 亚洲国产女人aaa毛片在线| 欧美日韩国产色视频| 亚洲已满18点击进入久久| 国产欧美韩国高清| 玖玖国产精品视频| 99国产一区二区三精品乱码| 国产精品青草久久| 久久人体大胆视频| 亚洲天堂偷拍| 亚洲人成毛片在线播放| 国产精品男女猛烈高潮激情| 久久免费高清| 亚洲午夜视频在线观看| 黄色成人小视频| 国产精品久久久久久久久免费| 久久精品夜色噜噜亚洲a∨ | 亚洲欧洲日韩女同| 国产精品伦一区| 欧美另类高清视频在线| 欧美一区午夜视频在线观看| 最近看过的日韩成人| 狠狠色综合网| 狠狠久久婷婷| 国产欧美短视频| 国产精品视频免费在线观看| 欧美裸体一区二区三区| 男女激情久久| 久久人人爽人人| 欧美主播一区二区三区| 亚洲欧美日韩直播| 欧美刺激性大交免费视频| 亚洲一级片在线看| 日韩一级黄色av| 一本一本久久a久久精品综合麻豆| 尤物yw午夜国产精品视频| 精品99一区二区三区| 黄色成人在线观看| 一区视频在线看| 韩国三级在线一区| 狠狠综合久久av一区二区老牛| 亚洲电影免费在线| 亚洲乱码久久| 一区二区三区欧美日韩| 亚洲影院色无极综合| 性色一区二区| 亚洲影院一区| 美脚丝袜一区二区三区在线观看| 欧美一区二区三区婷婷月色| 亚洲一区二区在线免费观看视频| 制服诱惑一区二区| 久久国产日韩| 欧美91福利在线观看| 麻豆国产va免费精品高清在线| 久久久久九九视频| 1024成人网色www| 国产精品视频成人| 亚洲美女av在线播放| 久久精品电影| 欧美日韩国产综合网| 一区二区三区自拍| 久久国产精品99精品国产| 欧美片网站免费| 亚洲国产欧洲综合997久久| 久久蜜桃精品| 尤物九九久久国产精品的分类| 久久精品国产999大香线蕉| 国产精品国产三级国产aⅴ入口 | 国产精品一区二区在线观看| 亚洲精品四区| 欧美国产精品劲爆| 日韩视频在线一区二区| 欧美日韩精品一区二区三区| 一区二区三区日韩精品| 欧美亚男人的天堂| 欧美伊人久久大香线蕉综合69| 国产综合色精品一区二区三区| 日韩一级黄色av| 亚洲精品1234| 国产精品久久激情| 久久在线免费| 欧美一级久久久久久久大片| 亚洲国产一区二区三区青草影视 | 亚洲影院免费| 国产一区在线免费观看|