以鼠標(biāo)為列的USB開發(fā)實(shí)戰(zhàn)資料,有詳細(xì)的原理圖和程序
上傳時(shí)間: 2013-04-24
上傳用戶:123啊
該文主要研究開發(fā)了適用于電力有源濾波器、開關(guān)磁阻電機(jī)調(diào)速系統(tǒng)等現(xiàn)代電力電子裝置的開關(guān)穩(wěn)壓電源.該電源采用雙端反激式功率變換電路,降低了功率MOSFET截止期間的所承受電壓應(yīng)力,減小了管子的耐壓要求.該文首先詳細(xì)分析了多輸出電流型雙端反激式開關(guān)電源的基本工作原理,并在此基礎(chǔ)上建立了一套系統(tǒng)的、準(zhǔn)確的穩(wěn)態(tài)數(shù)學(xué)模型及動(dòng)態(tài)小信號模型.根據(jù)所建立的數(shù)學(xué)模型,結(jié)合自動(dòng)控制原理,對閉環(huán)控制系統(tǒng)進(jìn)行了穩(wěn)定性分析研究,提出了穩(wěn)定運(yùn)行條件,給出了閉環(huán)系統(tǒng)的參數(shù)設(shè)計(jì).然后根據(jù)已建立的數(shù)學(xué)模型,利用MATLAB軟件仿真分析了系統(tǒng)的穩(wěn)定性,同時(shí)建立了PSPICE實(shí)時(shí)仿真電路模型,進(jìn)行了深入細(xì)致的計(jì)算機(jī)仿真研究,驗(yàn)證了理論設(shè)計(jì)的正確性、合理性.最后設(shè)計(jì)了一套38W、六路輸出的原理樣機(jī),給出了相關(guān)的實(shí)驗(yàn)波形和實(shí)驗(yàn)結(jié)果分析.
標(biāo)簽: 電流型 雙端 反激式開關(guān)電源
上傳時(shí)間: 2013-06-25
上傳用戶:大三三
該文的主要內(nèi)容是對螺管式步進(jìn)比例電磁鐵磁場的電磁吸力產(chǎn)生機(jī)理、結(jié)構(gòu)形式、電磁吸力數(shù)值計(jì)算和參數(shù)優(yōu)化設(shè)計(jì)等進(jìn)行分析研究.為了使銜鐵可作長行程的往復(fù)直線運(yùn)動(dòng),在結(jié)構(gòu)上采用無擋鐵式的螺管電磁鐵,這樣電磁吸力主要由漏磁通產(chǎn)生,由麥克斯韋電磁力公式可推知:力的大小和方向可以得到比較大的電磁吸力;另外,該文還對影響電磁吸力的其它因素:軛鐵半徑、銜鐵半徑、槽的尺寸形狀等進(jìn)行了正交優(yōu)化試驗(yàn),弄清了各因素對電磁吸力的影響程度,進(jìn)一步應(yīng)用Tabu搜索法對各因素進(jìn)行全局優(yōu)化,得出各參數(shù)最優(yōu)組合方案,并經(jīng)工廠實(shí)踐檢驗(yàn),結(jié)果較理想.該文還對電磁鐵的動(dòng)態(tài)特性,也即對整個(gè)步進(jìn)運(yùn)動(dòng)過程中電磁吸力、運(yùn)動(dòng)速度、位移等與運(yùn)動(dòng)時(shí)間之間的關(guān)系進(jìn)行了計(jì)算分析,以便工廠可以更好地對電磁鐵的通電時(shí)間、運(yùn)動(dòng)過程進(jìn)行控制.
上傳時(shí)間: 2013-04-24
上傳用戶:趙安qw
本文對直驅(qū)式變速恒頻風(fēng)力發(fā)電領(lǐng)域的關(guān)鍵技術(shù)從理論到仿真進(jìn)行了較為全面深入的研究,在詳細(xì)分析直驅(qū)式風(fēng)力發(fā)電系統(tǒng)的特點(diǎn)和已有最大功率跟蹤算法的基礎(chǔ)上,確立了由梯形波永磁同步發(fā)電機(jī)、三相不可控整流橋、直流升壓電路、全橋逆變器構(gòu)成的并網(wǎng)主電路拓?fù)浣Y(jié)構(gòu),提出了通過控制直流升壓電路的占空比,以使風(fēng)機(jī)獲得最大功率的跟蹤算法,同時(shí)增加速度估算控制方法,以提高系統(tǒng)的響應(yīng)速度。 由直流升壓電路中儲能大電感的存在,迫使發(fā)電機(jī)的各相電流為梯形波,為了發(fā)電機(jī)輸出功率平穩(wěn),減小系統(tǒng)的轉(zhuǎn)矩脈動(dòng),則發(fā)電機(jī)的電動(dòng)勢最好是梯形波。梯形波永磁同步發(fā)電機(jī)發(fā)出的三相電壓為梯形波,通過整流橋整流之后,獲得脈動(dòng)較小的整流直流電壓,特別適合于大電感濾波,同時(shí)電磁轉(zhuǎn)矩脈動(dòng)小,系統(tǒng)振動(dòng)噪聲低。該電機(jī)可以和風(fēng)力機(jī)直接耦合,適用于大型低速風(fēng)力發(fā)電系統(tǒng)。三相不可控整流具有可靠性高,簡化硬件電路;直流變換電路可將整流后的直流電壓提升到逆變器所需的幅值基本恒定的直流電壓,經(jīng)逆變器逆變后并網(wǎng)。最大功率跟蹤算法的提出能夠使風(fēng)電系統(tǒng)快速跟蹤風(fēng)速的變化,維持最佳葉尖速比,捕獲最大風(fēng)能。 本文還利用仿真軟件MATLAB/Simulink平臺搭建了仿真模塊并進(jìn)行了動(dòng)態(tài)仿真,對所設(shè)計(jì)的最大功率跟蹤算法進(jìn)行仿真分析。結(jié)果表明,該算法具有較快的系統(tǒng)響應(yīng),速度估算器也能較快的跟蹤變化的實(shí)際轉(zhuǎn)速。
上傳時(shí)間: 2013-04-24
上傳用戶:libinxny
本文在分析干式電力變壓器絕緣結(jié)構(gòu)和電場分布特點(diǎn)的基礎(chǔ)上,建立了四種電場分析模型:二維和三維高壓繞組電場分析模型、二維和三維端部電場分析模型。以SG10型H級絕緣空氣自冷干式變壓器為具體分析對象,采用ANSYS有限元分析軟件對四個(gè)電場模型進(jìn)行了有限元建模,并完成了有限元分析,得出相應(yīng)的干式電力變壓器絕緣的電場強(qiáng)度和分布分析結(jié)果。 在深入理解ANSYS有限元分析軟件接口的基礎(chǔ)上,編寫了以APDL參數(shù)化語言為基礎(chǔ)的命令流程序,并采用C++Builder6.0軟件編寫了實(shí)現(xiàn)模型修改和結(jié)果顯示的程序,完成了干式電力變壓器電場有限元分析系統(tǒng)的開發(fā)。應(yīng)用該軟件,用戶可以對四個(gè)模型的絕緣結(jié)構(gòu)尺寸、介電常數(shù)等參數(shù)直接進(jìn)行修改,在調(diào)用ANSYS軟件進(jìn)行有限元分析后,可以得到非常直觀的相應(yīng)干式電力變壓器絕緣的電場強(qiáng)度和分布結(jié)果,包括顯示電場的最大電場強(qiáng)度值及其位置,以及用圖像方式顯示模型的電場強(qiáng)度矢量圖利分布云圖。本文工作對于研究干式電力變壓器的電場分布以及絕緣合理設(shè)計(jì)具有工程意義。
上傳時(shí)間: 2013-06-26
上傳用戶:tianyi223
usb技術(shù)經(jīng)驗(yàn)的分享,通過閱讀該文檔,將會(huì)對usb技術(shù)有更深刻的理解,是一份不可多得的資料。
標(biāo)簽: USB
上傳時(shí)間: 2013-06-19
上傳用戶:anpa
本文針對電力變壓器的電磁設(shè)計(jì)過程、優(yōu)化方法、優(yōu)化系統(tǒng)的體系結(jié)構(gòu),以及優(yōu)化設(shè)計(jì)系統(tǒng)開發(fā)中采用的技術(shù)和處理方法展開了深入的討論和研究,開發(fā)了一套干式變壓器電磁計(jì)算優(yōu)化設(shè)計(jì)系統(tǒng)。論文工作主要包括以下幾方面的內(nèi)容: (1)綜述了電力變壓器的結(jié)構(gòu)特征和傳統(tǒng)電磁設(shè)計(jì)的流程,分析了變壓器電磁設(shè)計(jì)中的設(shè)計(jì)流程、設(shè)計(jì)目標(biāo)、方案組合等重點(diǎn)問題,研究了變壓器的評價(jià)準(zhǔn)則的選擇和計(jì)算。同時(shí)對變壓器電磁設(shè)計(jì)計(jì)算的細(xì)節(jié)做了深入分析,理清了變壓器設(shè)計(jì)中各個(gè)步驟、各個(gè)部件之間的相互關(guān)系,成功地將變壓器計(jì)算中的一些核心的計(jì)算過程程序化。 (2)深入研究和分析了目前變壓器優(yōu)化設(shè)計(jì)的研究和實(shí)踐中所采用的優(yōu)化方法,包括比較成熟的循環(huán)遍歷法和其他還處于研究階段或還有缺陷的方法,對這些算法的原理、應(yīng)用情況、優(yōu)缺點(diǎn)進(jìn)行了比較和總結(jié)。 (3)將ODBC(開放數(shù)據(jù)庫互連)和OLE(對象鏈接和嵌入)自動(dòng)化技術(shù)引入電力變壓器的電磁優(yōu)化設(shè)計(jì)系統(tǒng)中,一改以往的設(shè)計(jì)軟件封閉的弊病,具有出色的可擴(kuò)展性,充分利用了現(xiàn)代操作系統(tǒng)環(huán)境的先進(jìn)功能。以oLE自動(dòng)化技術(shù)為基礎(chǔ)的計(jì)算單自動(dòng)生成技術(shù),使變壓器設(shè)計(jì)軟件能夠在更大程度上協(xié)助設(shè)計(jì)人員的工作,將設(shè)計(jì)人員從簡單勞動(dòng)中解脫出來,使設(shè)計(jì)軟件能夠真正成為全面的變壓器優(yōu)化設(shè)計(jì)軟件。 (4)將各種型式的敞開式和環(huán)氧澆注干式變壓器電磁計(jì)算優(yōu)化設(shè)計(jì)整合到同一系統(tǒng)中,方便了用戶不同的設(shè)計(jì)要求,同時(shí)根據(jù)專家理論設(shè)計(jì)了眾多人工干預(yù)設(shè)計(jì)的環(huán)節(jié),令本軟件更具有系統(tǒng)性、實(shí)用性、開放性和個(gè)性。 (5)對當(dāng)前熱門的非晶合金變壓器進(jìn)行了簡要介紹,并指出非晶合金變壓器的優(yōu)缺點(diǎn),分析了其即將全面使用的趨勢。同時(shí)對非晶合金干式變壓器的優(yōu)化設(shè)計(jì)進(jìn)行了研究和探討,給下一步的工作指明了方向。
標(biāo)簽: 干式變壓器 優(yōu)化設(shè)計(jì) 電磁計(jì)算
上傳時(shí)間: 2013-05-28
上傳用戶:王慶才
由于干式變壓器的優(yōu)良性能以及在特種場合下對干式變壓器的應(yīng)用需求,當(dāng)前我國干式變壓器市場空間廣闊,競爭激烈。但是目前國內(nèi)許多干式變壓器生產(chǎn)廠家仍然停留在手工設(shè)計(jì)計(jì)算階段,設(shè)計(jì)的效率低、周期長、人工成本高。干式變壓器原材料的上漲,也加大了廠家的制作成本。以研究、開發(fā)實(shí)用性干式變壓器CAD系統(tǒng)為目的,本文對該集成軟件的系統(tǒng)分析及相應(yīng)的實(shí)現(xiàn)技術(shù)進(jìn)行了詳細(xì)的研究。 首先,在總結(jié)干式變壓器手工設(shè)計(jì)方法的基礎(chǔ)上,借鑒變壓器的通用優(yōu)化設(shè)計(jì)模型,結(jié)合干式變壓器的特點(diǎn),建立了干式變壓器的優(yōu)化設(shè)計(jì)模型。以鐵芯直徑、窗高、內(nèi)線圈匝數(shù)、外線圈電流密度、內(nèi)線圈電流密度為變量,采用改進(jìn)遺傳算法對其進(jìn)行干式變壓器單機(jī)優(yōu)化設(shè)計(jì)。該算法將模擬退火思想引入到遺傳算法的選擇機(jī)制中,解決了傳統(tǒng)遺傳算法過早收斂的問題。其與傳統(tǒng)遺傳算法優(yōu)化結(jié)果對比表明:新的算法收斂性較好,優(yōu)化效果較明顯,算法是成功的。并根據(jù)Appelbaum序貫分解法的基本思想,通過“共同變量”和“非共同變量”將系列中兼容的各規(guī)格變壓器聯(lián)系起來,得到系列變壓器優(yōu)化設(shè)計(jì)的統(tǒng)一數(shù)學(xué)模型,然后使用改進(jìn)后的遺傳算法對中小型干式變壓器中套用同一個(gè)機(jī)座的系列優(yōu)化問題進(jìn)行了探討,并在此基礎(chǔ)上建立了干式變壓器系列優(yōu)化的軟件優(yōu)化設(shè)計(jì)流程。 其次,在軟件設(shè)計(jì)方面選用C++程序設(shè)計(jì)語言,采用Visual Basic進(jìn)行界面編寫,且運(yùn)用ActiveX技術(shù)實(shí)現(xiàn)了VB與AutoCAD軟件的連接。該設(shè)計(jì)不但能夠?qū)Ω墒阶儔浩鬟M(jìn)行優(yōu)化設(shè)計(jì),并且添加了CAD制圖功能。本文對數(shù)據(jù)庫支撐的干式變壓器CAD系統(tǒng)進(jìn)行了系統(tǒng)設(shè)計(jì)和研究,詳細(xì)探討了該集成軟件的實(shí)現(xiàn)技術(shù)。 最后,在各項(xiàng)性能指標(biāo)都滿足國家標(biāo)準(zhǔn)要求的情況下,以SC9-50/10型號和SCB9-1250/10型號的干式變壓器為例進(jìn)行單機(jī)優(yōu)化,變壓器有效成本分別降低了2.83﹪和1.79﹪;以系列號SC9-50/10四個(gè)規(guī)格變壓器為例進(jìn)行系列優(yōu)化,分別按照不同的權(quán)重來進(jìn)行系列優(yōu)化設(shè)計(jì),優(yōu)化方案1時(shí),總成本下降了3.26﹪;優(yōu)化方案2時(shí),總成本下降了3.1﹪。可見,達(dá)到了預(yù)期效果,干式變壓器成本有效降低。
標(biāo)簽: CAD 干式變壓器 優(yōu)化設(shè)計(jì)
上傳時(shí)間: 2013-07-23
上傳用戶:kernaling
電纜偏心嚴(yán)重影響電纜的質(zhì)量,因此在電纜生產(chǎn)時(shí)必須要進(jìn)行偏心檢測。該文針對目前我國電纜偏心檢測技術(shù)落后的現(xiàn)狀,提出采用電渦流檢測方法來研制可以對電纜進(jìn)行在線實(shí)時(shí)偏心檢測的自動(dòng)化系統(tǒng),并對此項(xiàng)檢測技術(shù)進(jìn)行了詳細(xì)研究。 該文先從偏心傳感器、數(shù)據(jù)采集器和上位機(jī)系統(tǒng)三大部分對電渦流式電纜偏心檢測系統(tǒng)進(jìn)行了整體設(shè)計(jì)。完成了偏心傳感器探頭的設(shè)計(jì)并解決了偏心傳感器振蕩電路的電源供應(yīng)問題和信號從旋轉(zhuǎn)部件到靜止部件的傳輸問題。以TLC2543A/D轉(zhuǎn)換器和AT89C52單片機(jī)為核心器件設(shè)計(jì)了數(shù)據(jù)采集器,完成模擬信號到數(shù)字信號的轉(zhuǎn)換,并通過RS-232串行通訊把采樣數(shù)據(jù)傳輸給PC機(jī)。利用VisualBasic語言開發(fā)了軟件系統(tǒng),對接收的數(shù)據(jù)進(jìn)行了處理并對結(jié)果進(jìn)行了輸出顯示。 為了提高檢測系統(tǒng)的精度,系統(tǒng)中采用了模擬濾波器和數(shù)字濾波器。根據(jù)檢測系統(tǒng)中信號的特點(diǎn),分別確定了模擬濾波器和數(shù)字濾波器的性能指標(biāo),設(shè)計(jì)了抗混疊的3階巴特沃思模擬濾波器和5階橢圓型ⅡR低通數(shù)字濾波器,并采用適當(dāng)?shù)姆椒ㄟM(jìn)行了實(shí)現(xiàn)。在靜態(tài)的電纜偏心檢測實(shí)驗(yàn)系統(tǒng)中對濾波器的性能進(jìn)行了驗(yàn)證。 偏心傳感器是檢測系統(tǒng)中的關(guān)鍵部件,它的性能至關(guān)重要。該文通過構(gòu)造的靜態(tài)實(shí)驗(yàn)系統(tǒng)對偏心傳感器的性能進(jìn)行了研究,分析了被測電纜線芯直徑、檢測線圈的匝數(shù)和檢測探頭的尺寸對偏心傳感器性能的影響。
上傳時(shí)間: 2013-06-19
上傳用戶:yt1993410
電子式互感器與傳統(tǒng)電磁式互感器相比,在帶寬、絕緣和成本等方面具有優(yōu)勢,因而代表了高電壓等級電力系統(tǒng)中電流和電壓測量的一種極具吸引力的發(fā)展方向。隨著信息技術(shù)的發(fā)展和電力市場中競爭機(jī)制的形成,電子式互感器成為人們研究的熱點(diǎn);越來越多的新技術(shù)被引入到電子式互感器設(shè)計(jì)中,以提高其工作可靠性,降低運(yùn)行總成本,減小對生態(tài)環(huán)境的壓力。本文圍繞電子式互感器實(shí)用化中的關(guān)鍵技術(shù)而展開理論與實(shí)驗(yàn)研究,具體包括新型傳感器、雙傳感器的數(shù)據(jù)融合算法、數(shù)字接口、組合式電源、低功耗技術(shù)和自監(jiān)測功能的實(shí)現(xiàn)等。 目前電子式電流互感器(ECT)大多數(shù)采用單傳感器開環(huán)結(jié)構(gòu),對每個(gè)環(huán)節(jié)的精度和可靠性的要求都很高,嚴(yán)重制約了ECT整體性能的提高,影響其實(shí)用化。本文介紹了新型傳感器~鐵心線圈式低功率電流傳感器(LPET)和印刷電路板(PCB)空心線圈及其數(shù)字積分器,在此基礎(chǔ)上設(shè)計(jì)了一種基于LPCT和PCB空心線圈的組合結(jié)構(gòu)的新型電流傳感器。該結(jié)構(gòu)具有并聯(lián)的特點(diǎn),結(jié)合了這兩種互感器的優(yōu)點(diǎn),采用數(shù)據(jù)融合算法來處理兩路信號,實(shí)現(xiàn)高精度測量和提高系統(tǒng)可靠性,并探索出辨別LPET飽和的新方法。試驗(yàn)和仿真結(jié)果表明,這種新型電流傳感器可以覆蓋較大的電流測量范圍,達(dá)到IEC 60044-8標(biāo)準(zhǔn)中關(guān)于測量(幅值誤差)、保護(hù)(復(fù)合誤差)和暫態(tài)響應(yīng)(峰值)的準(zhǔn)確度要求,能夠作為多用途電流傳感器使用。 在電子式電壓互感器方面,基于精密電阻分壓器的新型傳感器在原理、結(jié)構(gòu)和輸出信號等方面與傳統(tǒng)的電壓互感器有很大不同,本文設(shè)計(jì)了一種可替代10kV電磁式電壓互感器的精密電阻分壓器。通過試驗(yàn)研究與計(jì)算分析,得出其性能主要受電阻特性和雜散電容的影響,并給出了減小其誤差的方法。測試結(jié)果表明,設(shè)計(jì)的10kV精密電阻分壓器的準(zhǔn)確度滿足IEC 60044-7標(biāo)準(zhǔn)要求,可達(dá)0.2級。 電子式互感器的關(guān)鍵技術(shù)之一是內(nèi)部的數(shù)字化以及其標(biāo)準(zhǔn)化接口,本文以10kV組合型電子式互感器為對象設(shè)計(jì)了一種實(shí)用化的數(shù)字系統(tǒng)。以精密電阻分壓器作為電壓傳感器,電流傳感器則采用基于數(shù)據(jù)融合算法的LPCT和PCB空心線圈的組合結(jié)構(gòu)。本文首先解決了互感器間的同步與傳感器間的內(nèi)部同步問題,進(jìn)而依照IEC61850-9-1標(biāo)準(zhǔn),實(shí)現(xiàn)了組合型電子式互感器的100M以太網(wǎng)接口。 電子式電流互感器在高電壓等級的應(yīng)用研究中,ECT高壓側(cè)的電源問題是關(guān)鍵技術(shù)之一。論文首先分析了兩種電源方案:取電CT電源和激光電源。取電CT電源通過一個(gè)特制的電流互感器(取電CT),直接從高壓側(cè)母線電流中獲取電能。在取電CT和整流橋之間設(shè)計(jì)一個(gè)串聯(lián)電感,大大降低了施加在整流橋上的的感應(yīng)電壓并限制了取電CT的輸出電流,起到了穩(wěn)定電壓和保護(hù)后續(xù)電路的作用。激光電源方案以先進(jìn)的光電轉(zhuǎn)換器、半導(dǎo)體激光二極管和光纖為基礎(chǔ),單獨(dú)一根上行光纖同時(shí)完成供能和控制信號的傳輸,在不影響光供能穩(wěn)定性的情況下,數(shù)據(jù)通信完成在短暫的供能間隔中。在高電位端控制信號通過在能量變換電路中增加一個(gè)比較器電路被提取出來。本文還提出了一種將兩種供能方式結(jié)合使用的組合電源,并設(shè)計(jì)了這兩種電源之間的切換方法,解決了取電CT電源的死區(qū)問題,延長了激光器的使用壽命。作為綜合應(yīng)用實(shí)例,設(shè)計(jì)并完成了以LPCT為傳感器、由組合電源供能、采用低功耗技術(shù)的高壓電子式電流互感器。互感器高壓側(cè)的一次轉(zhuǎn)換器能夠提供兩路傳感器數(shù)據(jù)通道,并且具有溫度補(bǔ)償和采集通道的自校正功能,在更寬溫度、更大電流范圍內(nèi)保證了極高的測量精度:互感器低電位端的二次轉(zhuǎn)換器具有數(shù)字和模擬接口,可以接收數(shù)據(jù)并發(fā)送命令來控制一次轉(zhuǎn)換器,包括同步和校正命令在內(nèi)的數(shù)據(jù)信號可以通過同一根供能光纖傳送到一次轉(zhuǎn)換器。該互感器具有在線監(jiān)測功能,這種預(yù)防性維護(hù)和自檢測功能夠提示維護(hù)或提出警告,提高了可靠性。系統(tǒng)測試表明:具有低功耗光纖發(fā)射驅(qū)動(dòng)電路的一次轉(zhuǎn)換器平均功耗在40mw以下:上行光纖中通信波特率可以達(dá)到200kb/s,下行光纖中更是高達(dá)2Mb/s;系統(tǒng)準(zhǔn)確度同時(shí)滿足IEC6044-8標(biāo)準(zhǔn)對0.2S級測量和5TPE級保護(hù)電子式互感器的要求。
標(biāo)簽: 電子式互感器 關(guān)鍵技術(shù)
上傳時(shí)間: 2013-06-09
上傳用戶:handless
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1