樣板 B 樹 ( B - tree ) 規則 : (1) 每個節點內元素個數在 [MIN,2*MIN] 之間, 但根節點元素個數為 [1,2*MIN] (2) 節點內元素由小排到大, 元素不重複 (3) 每個節點內的指標個數為元素個數加一 (4) 第 i 個指標所指向的子節點內的所有元素值皆小於父節點的第 i 個元素 (5) B 樹內的所有末端節點深度一樣
上傳時間: 2017-05-14
上傳用戶:日光微瀾
Arduino 類比電壓的標準測試程式,利用讀取類比電壓的值來控制led閃爍的頻率,文中有詳細的描述與介紹說明。
上傳時間: 2013-12-20
上傳用戶:hewenzhi
歐幾里德算法:輾轉求余 原理: gcd(a,b)=gcd(b,a mod b) 當b為0時,兩數的最大公約數即為a getchar()會接受前一個scanf的回車符
上傳時間: 2014-01-10
上傳用戶:2467478207
數據結構課程設計 數據結構B+樹 B+ tree Library
上傳時間: 2013-12-31
上傳用戶:semi1981
#include "iostream" using namespace std; class Matrix { private: double** A; //矩陣A double *b; //向量b public: int size; Matrix(int ); ~Matrix(); friend double* Dooli(Matrix& ); void Input(); void Disp(); }; Matrix::Matrix(int x) { size=x; //為向量b分配空間并初始化為0 b=new double [x]; for(int j=0;j<x;j++) b[j]=0; //為向量A分配空間并初始化為0 A=new double* [x]; for(int i=0;i<x;i++) A[i]=new double [x]; for(int m=0;m<x;m++) for(int n=0;n<x;n++) A[m][n]=0; } Matrix::~Matrix() { cout<<"正在析構中~~~~"<<endl; delete b; for(int i=0;i<size;i++) delete A[i]; delete A; } void Matrix::Disp() { for(int i=0;i<size;i++) { for(int j=0;j<size;j++) cout<<A[i][j]<<" "; cout<<endl; } } void Matrix::Input() { cout<<"請輸入A:"<<endl; for(int i=0;i<size;i++) for(int j=0;j<size;j++){ cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl; cin>>A[i][j]; } cout<<"請輸入b:"<<endl; for(int j=0;j<size;j++){ cout<<"第"<<j+1<<"個:"<<endl; cin>>b[j]; } } double* Dooli(Matrix& A) { double *Xn=new double [A.size]; Matrix L(A.size),U(A.size); //分別求得U,L的第一行與第一列 for(int i=0;i<A.size;i++) U.A[0][i]=A.A[0][i]; for(int j=1;j<A.size;j++) L.A[j][0]=A.A[j][0]/U.A[0][0]; //分別求得U,L的第r行,第r列 double temp1=0,temp2=0; for(int r=1;r<A.size;r++){ //U for(int i=r;i<A.size;i++){ for(int k=0;k<r-1;k++) temp1=temp1+L.A[r][k]*U.A[k][i]; U.A[r][i]=A.A[r][i]-temp1; } //L for(int i=r+1;i<A.size;i++){ for(int k=0;k<r-1;k++) temp2=temp2+L.A[i][k]*U.A[k][r]; L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r]; } } cout<<"計算U得:"<<endl; U.Disp(); cout<<"計算L的:"<<endl; L.Disp(); double *Y=new double [A.size]; Y[0]=A.b[0]; for(int i=1;i<A.size;i++ ){ double temp3=0; for(int k=0;k<i-1;k++) temp3=temp3+L.A[i][k]*Y[k]; Y[i]=A.b[i]-temp3; } Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1]; for(int i=A.size-1;i>=0;i--){ double temp4=0; for(int k=i+1;k<A.size;k++) temp4=temp4+U.A[i][k]*Xn[k]; Xn[i]=(Y[i]-temp4)/U.A[i][i]; } return Xn; } int main() { Matrix B(4); B.Input(); double *X; X=Dooli(B); cout<<"~~~~解得:"<<endl; for(int i=0;i<B.size;i++) cout<<"X["<<i<<"]:"<<X[i]<<" "; cout<<endl<<"呵呵呵呵呵"; return 0; }
標簽: 道理特分解法
上傳時間: 2018-05-20
上傳用戶:Aa123456789
【問題描述】已知線性方程組AX=B,求解該方程組。參考算法: 消去法:將列向量B加到矩陣A的最后一列,構成增廣矩陣AB。對AB進行下列三種初等變換,使原矩陣A的部分的主對角線上的元素均為1,其余元素均為0,則原列向量B的部分即為X的值: 1. 將矩陣的一行乘以一個不為0的數 2. 將矩陣的一行加上另一行的倍數 3. 交換矩陣中兩行的位置
上傳時間: 2015-06-18
上傳用戶:stvnash
* 高斯列主元素消去法求解矩陣方程AX=B,其中A是N*N的矩陣,B是N*M矩陣 * 輸入: n----方陣A的行數 * a----矩陣A * m----矩陣B的列數 * b----矩陣B * 輸出: det----矩陣A的行列式值 * a----A消元后的上三角矩陣 * b----矩陣方程的解X
上傳時間: 2015-07-26
上傳用戶:xauthu
(1) 、用下述兩條具體規則和規則形式實現.設大寫字母表示魔王語言的詞匯 小寫字母表示人的語言詞匯 希臘字母表示可以用大寫字母或小寫字母代換的變量.魔王語言可含人的詞匯. (2) 、B→tAdA A→sae (3) 、將魔王語言B(ehnxgz)B解釋成人的語言.每個字母對應下列的語言.
上傳時間: 2013-12-30
上傳用戶:ayfeixiao
1.有三根桿子A,B,C。A桿上有若干碟子 2.每次移動一塊碟子,小的只能疊在大的上面 3.把所有碟子從A桿全部移到C桿上 經過研究發現,漢諾塔的破解很簡單,就是按照移動規則向一個方向移動金片: 如3階漢諾塔的移動:A→C,A→B,C→B,A→C,B→A,B→C,A→C 此外,漢諾塔問題也是程序設計中的經典遞歸問題
上傳時間: 2016-07-25
上傳用戶:gxrui1991
1. 下列說法正確的是 ( ) A. Java語言不區分大小寫 B. Java程序以類為基本單位 C. JVM為Java虛擬機JVM的英文縮寫 D. 運行Java程序需要先安裝JDK 2. 下列說法中錯誤的是 ( ) A. Java語言是編譯執行的 B. Java中使用了多進程技術 C. Java的單行注視以//開頭 D. Java語言具有很高的安全性 3. 下面不屬于Java語言特點的一項是( ) A. 安全性 B. 分布式 C. 移植性 D. 編譯執行 4. 下列語句中,正確的項是 ( ) A . int $e,a,b=10 B. char c,d=’a’ C. float e=0.0d D. double c=0.0f
上傳時間: 2017-01-04
上傳用戶:netwolf