電路連接 由于數碼管品種多樣,還有共陰共陽的,下面我們使用一個數碼管段碼生成器(在文章結尾) 去解決不同數碼管的問題: 本例作者利用手頭現有的一位不知品牌的共陽數碼管:型號D5611 A/B,在Eagle 找了一個 類似的型號SA56-11,引腳功能一樣可以直接代換。所以下面電路圖使用SA56-11 做引腳說明。 注意: 1. 將數碼管的a~g 段,分別接到Arduino 的D0~D6 上面。如果你手上的數碼管未知的話,可以通過通電測量它哪個引腳對應哪個字段,然后找出a~g 即可。 2. 分清共陰還是共陽。共陰的話,接220Ω電阻到電源負極;共陽的話,接220Ω電阻到電源+5v。 3. 220Ω電阻視數碼管實際工作亮度與手頭現有原件而定,不一定需要準確。 4. 按下按鈕即停。 源代碼 由于我是按照段碼生成器默認接法接的,所以不用修改段碼生成器了,直接在段碼生成器選擇共陽極,再按“自動”生成數組就搞定。 下面是源代碼,由于偷懶不用寫循環,使用了部分AVR 語句。 PORTD 這個是AVR 的端口輸出控制語句,8 位對應D7~D0,PORTD=00001001 就是D3 和D0 是高電平。 PORTD = a;就是找出相應的段碼輸出到D7~D0。 DDRD 這個是AVR 語句中控制引腳作為輸出/輸入的語句。DDRD = 0xFF;就是D0~D7 全部 作為輸出腳了。 ARDUINO CODECOPY /* Arduino 單數碼管骰子 Ansifa 2011-12-28 */ //定義段碼表,表中十個元素由LED 段碼生成器生成,選擇了共陽極。 inta[10] = {0xC0, 0xF9, 0xA4, 0xB0, 0x99, 0x92, 0x82, 0xF8, 0x80, 0x90}; voidsetup() { DDRD = 0xFF; //AVR 定義PortD 的低七位全部用作輸出使用。即0xFF=B11111111對 應D7~D0 pinMode(12, INPUT); //D12用來做骰子暫停的開關 } voidloop() { for(int i = 0; i < 10; i++) { //將段碼輸出PortD 的低7位,即Arduino 的引腳D0~D6,這樣需要取出PORTD 最高位,即 D7的狀態,與段碼相加,之后再輸出。 PORTD = a[i]; delay(50); //延時50ms while(digitalRead(12)) {} //如果D12引腳高電平,則在此死循環,暫停LED 跑 動 } }
上傳時間: 2013-10-15
上傳用戶:baitouyu
為了提高Forward變換器非線性系統的控制性能,采用了精確線性化控制方法。首先采用開關函數和開關周期平均算子建立適合微分幾何方法的仿射非線性系統模型。從理論上證明了該模型滿足系統精確線性化的條件。對非線性坐標變換后得到的線性系統,利用二次型最優控制策略推導出非線性狀態反饋控制律。實驗結果表明,系統具有良好的靜態和動態性能,驗證了該控制方法的有效性和正確性。
上傳時間: 2013-11-10
上傳用戶:xywhw1
對於輸出電壓處於輸入電壓範圍之內 (這在鋰離子電池供電型應用中是一種很常見的情形) 的 DC/DC 轉換器設計,可供采用的傳統解決方案雖有不少,但迄今為止都不能令人非常滿意
上傳時間: 2013-11-19
上傳用戶:urgdil
摘要:文章介紹了單片機控制系統溫度“數字化”的概念,描述了溫度“數字化”與“數字處理”的—般方法的過程與系-e3Ui案,闡述了一種新穎溫度“數字化”的思路與方法并歸納了這種方法的主要特點。關鍵詞:溫度;數字化;數字處理
上傳時間: 2013-11-05
上傳用戶:lyy1234
摘要:介紹用MCS-51系列單片機控制手機收發短信息的原理、硬件電路、PDU數據格式和符合GSM07.05協議要求的短信息發送/接收程序,同時給出了一個應用實例。關鍵詞:單片機子 短信息 PDU GSM 接口
上傳時間: 2013-11-19
上傳用戶:lingfei
基于HT49的MCU控制HT93LC46的讀寫 HT93LC46EEPROM 是Holtek 制造的1K 位系列的EEPROM(電子可擦除只讀存儲器),一般它用于微控制器的固定數據的存儲。在本文中,我們將以Holtek 公司8 位微控制器HT49 系列為例,介紹該芯片常用的操作功能代碼。用戶只需把代碼加到程序中,并且在使用HT93LC46 之前將引腳CS/SK/DI/DO 連接即可。
上傳時間: 2013-11-02
上傳用戶:笨小孩
單片機模糊模糊控制是目前在控制領域所采用的三種智能控制方法中最具實際意義的方法。模糊控制的采用解決了大量過去人們無法解決的問題,并且在工業控制、家用電器和各個領域已取得了令人觸目的成效。本書是一本系統地介紹模糊控制的理論、技術、方法和應用的著作;內容包括模糊控制基礎、模糊控制器、模糊控制系統、模糊控制系統的穩定性、模糊控制系統的開發軟件,用單片微型機實現模糊控制的技術和方法,模糊控制在家用電器和工業上應用的實際例子;反映了模糊控制目前的水平。 單片機模糊模糊控制目錄 : 第一章 模糊邏輯、神經網絡集成電路的發展 1.1 模糊邏輯及其集成電路的發展1.1.1 模糊邏輯的誕生和發展1.1.2 模糊集成電路的發展進程1.2 神經網絡及其集成電路的發展1.2.1 神經網絡的形成歷史1.2.2 神經網絡集成電路的發展1.3 模糊邏輯和神經網絡的結合1.3.1 模糊邏輯和神經網絡結合的意義1.3.2 模糊邏輯和神經網絡結合的前景第二章 模糊邏輯及其理論基礎 2.1 模糊集合與隸屬函數2.1.1 模糊集合概念2.1.2 隸屬函數2.1.3 分解定理與擴張定理2.1.4 模糊數2.2 模糊關系、模糊矩陣與模糊變換2.2.1 模糊關系2.2.2 模糊矩陣2.2.3 模糊變換2.3模糊邏輯和函數2.3.1模糊命題2.3.2模糊邏輯2.3.3模糊邏輯函數2.4模糊語言2.4.1 語言及語言的模糊性2.4.2 模糊語言2.4.3 語法規則和算子2.4.4 模糊條件語句2.5 模糊推理2.5.1 模糊推理的CRI法2.5.2 模糊推理的TVR法2.5.3 模糊推理的直接法2.5.4 模糊推理的精確值法2.5.5 模糊推理的強度轉移法第三章 模糊控制基礎 3.1 模糊控制的系統結構3.2 精確量的模糊化3.2.1 語言變量的分檔3.2.2 語言變量值的表示方法3.2.3 精確量轉換成模糊量3.3 模糊量的精確化3.3.1 最大隸屬度法3.3.2 中位數法3.3.3 重心法3.4 模糊控制規則及控制算法3.4.1 模糊控制規則的格式3.4.2 模糊控制規則的生成3.4.3 模糊控制規則的優化3.4.4 模糊控制算法3.5 模糊控制的神經網絡方法3.5.1 神經元和神經網絡3.5.2 神經網絡的分布存儲和容錯性3.5.3 神經網絡的學習算法3.5.4 神經網絡實現的模糊控制3.5.5 神經網絡構造隸屬函數3.5.6 神經網絡存儲控制規則3.5.7 神經網絡實現模糊化、反模糊化第四章 模糊控制器 4.1 模糊控制器結構4.2 模糊控制器設計4.2.1 常規模糊控制器設計4.2.2 變結構模糊控制器設計4.2.3 自組織模糊控制器設計4.2.4 自適應模糊控制器設計4.3 模糊控制器的數學模型4.3.1 常規模糊控制器的數學模型4.3.2 模糊控制器數學模型的建立第五章 模糊控制系統 5.1 模糊系統的辨識和建模5.1.1 模糊系統辨識的數學基礎5.1.2 基于模糊關系方程的模糊模型辨識5.1.3 基于語言控制規則的模糊模型辨識5.2 模糊控制系統的設計5.2.1 模糊控制系統的一般設計過程5.2.2 模糊控制系統的典型設計5.3 模糊控制系統的穩定性5.3.1 穩定性分析的Lyapunov直接法5.3.2 語言規則描述的模糊控制系統的穩定性5.3.3 關系方程描述的模糊控制系統的穩定性第六章 數字單片機與模糊控制6.1 數字單片機MC68HC705P96.1.1 MC68HC705P9單片機性能概論6.1.2 MC68HC705P9單片機基本結構6.1.3 MC68HC705P9指令系統6.2 數字單片機模糊控制方式6.2.1 數字單片機與模糊控制關系6.2.2 數字單片機模糊控制方式第七章 模糊單片機與模糊控制7.1 模糊單片機NLX2307.1.1 模糊單片機NLX230性能概況7.1.2 NLX230的結構及引腳7.1.3 NLX230的模糊推理方式7.1.4 NLX230的內部寄存器7.1.5 NLX230的操作及接口技術7.2 NLX230開發系統7.3 NLX230應用例子第八章 模糊控制的開發軟件8.1 模糊推理機原理8.2 模糊推理機的算法8.3 模糊推理機結構和清單8.4 模糊邏輯知識基發生器8.5 模糊推理開發環境8.5.1 FIDE的工作條件8.5.2 FIDE的結構8.5.3 FIDE的工作過程第九章 模糊控制在家用電器中的應用9.1 模糊控制的電冰箱9.1.1 電冰箱模糊控制系統結構9.1.2 模糊控制規則和模糊量9.1.3 控制系統的電路結構9.1.4 控制規則的自調整9.2 模糊控制的電飯鍋9.2.1 煮飯的工藝過程曲線9.2.2 模糊控制的邏輯結構9.2.3 模糊量和模糊推理9.2.4 控制軟件框圖9.3 模糊控制的微波爐9.3.1 控制電路的結構框圖9.3.2 微波爐的模糊量與推理9.3.3 微波爐控制電路結構原理9.3.4 控制軟件原理及框圖9.4 模糊控制的洗衣機9.4.1 模糊洗衣機控制系統邏輯結構9.4.2 模糊洗衣機的模糊推理9.4.3 洗衣機物理量檢測方法9.4.4 布質和布量的模糊推理第十章 模糊控制在工程上的應用10.1 模糊參數自適應PID控制器10.1.1 自校正PID控制器10.1.2 模糊參數自適應PID控制系統結構10.1.3 模糊控制規則的產生10.1.4 模糊推理機理及運行結果10.2 恒溫爐模糊控制10.2.1 恒溫爐模糊控制的系統結構10.2.2 模糊控制器及控制規則的形成10.2.3 模糊控制器的校正10.3 感應電機模糊矢量控制10.3.1 模糊矢量控制系統結構10.3.2 矢量控制的基本原理10.3.3 模糊電阻觀測器10.3.4 模糊控制器及運行
上傳時間: 2014-12-28
上傳用戶:semi1981
隨著 微 電 子技術的飛速發展,電子產品越來越微型化,集成化,自動化,低廉化,進而推動著其它許多產業的發展。特別進人21世紀以來,生物技術與電子技術的結合,成為高科技領域的研究熱點。199()年由瑞士的Manz和Widmer首先提出的“微全分析系統”〔’〕(microto talan alysissy stems,即ptTAS),通俗地稱為“建在芯片上的實驗室”(Lab on a chip)或簡稱芯片實驗室(Lab chip),主要組成部分為電泳芯片,同時是進樣,分離和檢測為一體的微型裝置,其在電泳實驗中的高效檢測性能為生物化學分析儀器發展提供了一種借鑒。p.TAS廣泛應用于生物醫學、環境檢測、食品衛生、科學以及國防等眾多領域。目前 應 用 的大多為多通道的毛細管電泳芯片,這也是芯片發展的一個必然趨勢。這不僅對電泳芯片本身的設計和制作提出了更高的要求,也對傳感器和數據處理技術提出了新的挑戰。考慮成本,集成度,控制能力以及可靠性方面的因素,本系統采用單片機作為實時數據處理、控制以及通訊的硬件平臺。如果系統中既有實時的通信任務,同時又有其他實時任務,采用一個廉價的單片機,資源會比較緊張,不僅實現困難,結構復雜,而且效果可能不滿意。而采用高性能的處理器,又浪費了其有效資源,所以本系統采用兩個MCU協同工作,以并行/分布式多機的思想,構成了電泳芯 片核心的雙單片機系統結構。微全 分 析 系 統 進行的多項實時任務,可以劃分為以下 幾個模塊:①采集模塊。負責對外圍檢驗設備進行控 制以及對傳送過來的信號進行采集和分析;②交互模 塊。通過液晶顯示,鍵盤掃描,以及打印等實現實驗人 員對前端采集電路的交互操作;③雙單片機控制和通 信模塊。協調雙單片機之間的數據傳輸和指令傳輸 ;④網絡傳輸模塊。其中一個單片機通過以太網發送接 收數據到上位機。本文提出一種實時多任務的雙單片 機控制和通信系統[31的設計,一個MCU基于TCP /IP網絡模塊的實現。
上傳時間: 2013-11-15
上傳用戶:wangdean1101
利用系介質陶瓷材料研制的微波元器件,廣泛應用于航空航天、軍事及民用通信及電子設備中,在理論分析和工藝試驗的基礎上,通過對介質陶瓷材料組分和控制溫度工藝研究,優化BaO-Nd2O3-TiO2組分材料,改進煅燒溫度等工藝方法,研制出性能穩定性介質陶瓷材料。為研制用于高頻、超高頻電子設備中性能穩定微波元器件找到了有效的途徑。
上傳時間: 2013-11-05
上傳用戶:kangqiaoyibie
電子發燒友訊: 飛思卡爾是全球嵌入式處理解決方案、高級汽車電子、消費電子、工業控制和網絡市場的領導者。從微處理器和微控制器到傳感器、模擬集成電路(IC)和連接,我們的技術為創新奠定基礎,構建更加環保、安全、健康和互連的世界 MC9S12XHY系列是飛思卡爾公司的經過優化的,汽車16位微控制器產品系列,具有低成本,高性能的特點。該系列是聯接低端16位微控制器(如:MC9S12HY系列),和高性能32位解決方案的橋梁。MC9S12XHY系列定位于低端汽車儀器群集應用,它包括支持CAN和LIN/J2602通信,并傳送典型的群集請求,如步進失速檢測(SSD)和LCD驅動器的步進電機控制。 MC9S12XHY系列具有16位微控制器的所有優點和效率,同時又保持了飛思卡爾公司現有的8位和16位MCU系列的優勢,即低成本、低功耗、EMC和代碼尺寸效率等優點。與MC9S12HY系列相同,MC9S12XHY系列可以運行16位寬的訪問,而不會出現外設和存儲器的等待狀態。MC9S12XHY系列為100引腳LQFP和112引腳LQFP封裝,旨在最大限度地與100LQFP,MC9S12HY系列兼容。除了每個模塊具有I/O端口外,還可提供更多的,具有中斷功能的I/O端口,具有從停止或等待模式喚醒功能。 圖1 MC9S12XHY系列方框圖截圖
上傳時間: 2014-12-31
上傳用戶:66666