相對于JPEG中二維離散余弦變換(2DDCT)來說,在JPEG2000標準中,二維離散小波變換(2DDWT)是其圖像壓縮系統(tǒng)的核心變換。在很多需要進行實時處理圖像的系統(tǒng)中,如數碼相機、遙感遙測、衛(wèi)星通信、多媒體通信、便攜式攝像機、移動通信等系統(tǒng),需要用芯片實現(xiàn)圖像的編解碼壓縮過程。雖然有許多研究工作者對圖像處理的小波變換進行了研究,但大都只偏重算法研究,對算法硬件實現(xiàn)時的復雜性考慮較少,對圖像處理的小波變換硬件實現(xiàn)的研究也較少。 本文針對圖像處理的小波變換算法及其硬件實現(xiàn)進行了研究。對文獻[13]提出的“內嵌延拓提升小波變換”(Combiningthedata-extensionprocedureintothelifting-basedDWTcore)快速算法進行仔細分析,提出一種基于提升方式的5/3小波變換適合硬件實現(xiàn)的算法,在MATLAB中仿真驗證了該算法,證明其是正確的。并設計了該算法的硬件結構,在MATLAT的Simulink中進行仿真,對該結構進行VHDL語言的寄存器傳輸級(RTL)描述與仿真,成功綜合到Altera公司的FPGA器件中進行驗證通過。本算法與傳統(tǒng)的小波變換的邊界處理方法比較:由于將其邊界延拓過程內嵌于小波變換模塊中,使該硬件結構無需額外的邊界延拓過程,減少小波變換過程中對內存的讀寫量,從而達到減少內存使用量,降低功耗,提高硬件利用率和運算速度的特點。本算法與文獻[13]提出的算法相比較:無需增加額外的硬件計算模塊,又具有在硬件實現(xiàn)時不改變原來的提升小波算法的規(guī)則性結構的特點。這種小波變換硬件芯片的實現(xiàn)不僅適用于JPEG2000的5/3無損小波變換,當然也可用于其它各種實時圖像壓縮處理硬件系統(tǒng)。
上傳時間: 2013-06-13
上傳用戶:jhksyghr
逆變控制器的發(fā)展經歷從分立元件的模擬電路到以專用微處理芯片(DSP/MCU)為核心的電路系統(tǒng),并從數模混合電路過渡到純數字控制的歷程。但是,通用微處理芯片是為一般目的而設計,存在一定局限。為此,近幾年來逆變器專用控制芯片(ASIC)實現(xiàn)技術的研究越來越受到關注,已成為逆變控制器發(fā)展的新方向之一。本文利用一個成熟的單相電壓型PWM逆變器控制模型,圍繞逆變器專用控制芯片ASIC的實現(xiàn)技術,依次對專用芯片的系統(tǒng)功能劃分,硬件算法,全系統(tǒng)的硬件設計及優(yōu)化,流水線操作和并行化,芯片運行穩(wěn)定性等問題進行了初步研究。首先引述了單相電壓型PWM逆變器連續(xù)時間和離散時間的數學模型,以及基于極點配置的單相電壓型PWM逆變器電流內環(huán)電壓外環(huán)雙閉環(huán)控制系統(tǒng)的設計過程,同時給出了仿真結果,仿真表明此系統(tǒng)具有很好的動、靜態(tài)性能,并且具有自動限流功能,提高了系統(tǒng)的可靠性。緊接著分析了FPGA器件的特征和結構。在給出本芯片應用目標的基礎上,制定了FPGA目標器件的選擇原則和芯片的技術規(guī)格,完成了器件選型及相關的開發(fā)環(huán)境和工具的選取。然后系統(tǒng)闡述了復雜FPGA設計的設計方法學,詳細介紹了基于FPGA的ASIC設計流程,概要介紹了僅使用QuartusII的開發(fā)流程,以及Modelsim、SynplifyPro、QuartusII結合使用的開發(fā)流程。在此基礎上,進行了芯片系統(tǒng)功能劃分,針對:DDS標準正弦波發(fā)生器,電壓電流雙環(huán)控制算法單元,硬件PI算法單元,SPWM產生器,三角波發(fā)生器,死區(qū)控制器,數據流/控制流模塊等逆變器控制硬件算法/控制單元,研究了它們的硬件算法,完成了模塊化設計。分析了全數字鎖相環(huán)的結構和模型,以此為基礎,設計了一種應用于逆變器的,用比例積分方法替代傳統(tǒng)鎖相系統(tǒng)中的環(huán)路濾波,用相位累加器實現(xiàn)數控振蕩器(DCO)功能的高精度二階全數字鎖相環(huán)(DPLL)。分析了“流水線操作”等設計優(yōu)化問題,并針對逆變器控制系統(tǒng)中,控制系統(tǒng)算法呈多層結構,且層與層之間還有數據流聯(lián)系,其執(zhí)行順序和數據流的走向較為復雜,不利于直接采用流水線技術進行設計的特點,提出一種全新的“分層多級流水線”設計技術,有效地解決了復雜控制系統(tǒng)的流水線優(yōu)化設計問題。本文最后對芯片運行穩(wěn)定性等問題進行了初步研究。指出了設計中的“競爭冒險”和飽受困擾之苦的“亞穩(wěn)態(tài)”問題,分析了產生機理,并給出了常用的解決措施。
上傳時間: 2013-05-28
上傳用戶:ice_qi
逆變器在自動控制系統(tǒng)、電機交流調速、電力變換以及電力系統(tǒng)控制中都起著重要的作用;各系統(tǒng)對逆變器的性能需求也越來越高。PWM控制多重逆變器正是基于這些需求,實現(xiàn)可變頻、調壓、調相、低諧波、高穩(wěn)定性的解決方案。 PWM控制逆變器通過對每個脈沖寬度進行控制,以達到控制輸出電壓和改善輸出波形的目的;多重逆變器則是把幾個矩形波逆變器的輸出組合起來起來形成階梯波,從而消除諧波;PWM控制多重逆變器綜合上述兩種技術的特點,非常適合于應用在對諧波、電壓輸出及穩(wěn)定性要求比較高的場合。電力半導體技術和集成電路技術的快速發(fā)展,使得多重逆變器的控制、實現(xiàn)成為可能。 本文首先分析風力發(fā)電系統(tǒng)對逆變器的要求,從多重逆變器理論和PWM逆變器理論出發(fā),提出同步式PWM控制電壓型串聯(lián)多重逆變器系統(tǒng)解決方案。本方案也可以應用在逆變電源、交流電機調速及電力變換領域中。 文中建立了一個多重逆變器的PWM控制算法模型。該算法可完成頻率、相位、幅值可調的多重逆變器的PWM控制,且能完成逆變器故障運行下的保護與告警。并在MATLAB/SIMULINK環(huán)境下對算法模型進行仿真與分析。 在比較了現(xiàn)有PWM發(fā)生解決方案的基礎上,本文提出了一個基于FPGA(可編程邏輯陣列)的多重逆變器PWM控制系統(tǒng)實現(xiàn)方案。并給出一個主要由FPGA、ADC/DAC、驅動與保護電路、逆變器主回路及其他外圍電路構成的多重逆變器系統(tǒng)解決方案。實驗結果表明,此方案系統(tǒng)結構簡單、可行,很好完成上述多重逆變器的PWM控制算法。
上傳時間: 2013-06-28
上傳用戶:wmwai1314
現(xiàn)場可編程門陣列器件(FPGA)是一種新型集成電路,可以將眾多的控制功能模塊集成為一體,具有集成度高、實用性強、高性價比、便于開發(fā)等優(yōu)點,因而具有廣泛的應用前景。單相全橋逆變器是逆變器的一種基本拓撲結構,對它的研究可以為三相逆變器研究提供參考,因此對單相全橋逆變器的分析有著重要的意義。 本文研制了一種基于FPGA的SPWM數字控制器,并將其應用于單相逆變器進行了試驗研究。主要研究內容包括:SPWM數字控制系統(tǒng)軟件設計以及逆變器硬件電路設計,并對試驗中發(fā)現(xiàn)的問題進行了深入分析,提出了相應的解決方案和減小波形失真的措施。在硬件設計方面,首先對雙極性/單極性正弦脈寬調制技術進行分析,選用適合高頻設計的雙極性調制。其次,詳細分析死區(qū)效應,采用通過判斷輸出電壓電流之間的相位角預測橋臂電流極性方向,超前補償波形失真的方案。最后,采用電壓反饋實時檢測技術,對PWM進行動態(tài)調整。在控制系統(tǒng)軟件設計方面,采用FPGA自上而下的設計方法,對其控制系統(tǒng)進行了功能劃分,完成了DDS標準正弦波發(fā)生器、三角波發(fā)生器、SPWM產生器以及加入死區(qū)補償的PWM發(fā)生器、電流極性判斷(零點判斷模塊和延時模塊)和反饋等模塊的設計。針對仿真和實驗中的毛刺現(xiàn)象,分析其產生機理,給出常用的解決措施,改進了系統(tǒng)性能。
上傳時間: 2013-07-06
上傳用戶:66666
遙感圖像在人類生活和軍事領域的應用日益廣泛,適合各種要求的遙感圖像編碼技術具有重要的現(xiàn)實意義。基于小波變換的內嵌編碼技術已成為當前靜止圖像編碼領域的主流,其中就包括基于分層樹集合分割排序(Set Partitioning inHierarchical Trees,SPIHT)的內嵌編碼算法。這種算法具有碼流可隨機獲取以及良好的恢復圖像質量等特性,因此成為實際應用中首選算法。隨著對圖像編碼技術需求的不斷增長,尤其是在軍事應用領域如衛(wèi)星偵察等方面,這種編碼算法亟待轉換為可應用的硬件編碼器。 在靜止圖像編碼領域,高性能的圖像編碼器設計一直是相關研究人員不懈追求的目標。本文針對靜止圖像編碼器的設計作了深入研究,并致力于高性能的圖像編碼算法實現(xiàn)結構的研究,提出了具有創(chuàng)新性的降低計算量、存儲量,提高壓縮性能的算法實現(xiàn)結構,并成功應用于圖像編碼硬件系統(tǒng)中。這個方案還支持壓縮比在線可調,即在不改變硬件框架的條件下可按用戶要求實現(xiàn)16倍到2倍的壓縮,以適應不同的應用需求。本文所做的工作包括了兩個部分。 1.一種基于行的實時提升小波變換實現(xiàn)結構:該結構同時處理行變換和列變換,并且在圖像邊界采用對稱擴展輸出邊界數據,使得圖像小波變換時間與傳統(tǒng)的小波變換相比提高了將近2.6倍,提高了硬件系統(tǒng)的實時性。該結構還合理地利用和調度內部緩沖器,不需要外部緩沖器,大大降低了硬件系統(tǒng)對存儲器的要求。 2.一種采用左遍歷的比特平面并行SPIHT編碼結構:在該編碼結構中,空間定位生成樹采用深度優(yōu)先遍歷方式,比特平面同時處理極大地提高了編碼速度。
上傳時間: 2013-06-17
上傳用戶:abc123456.
· 摘要: 介紹了采用TI公司最新推出的控制用芯片TMS320F2812,利用其事件管理器的3個全比較單元生成三相對稱SPWM波的設計方案.同時,文中還給出了相關源程序代碼及脈寬計算的具體推導.最后通過實驗,得到了令人滿意的輸出波形.
上傳時間: 2013-05-31
上傳用戶:腳趾頭
1、 利用FLEX10的片內RAM資源,根據DDS原理,設計產生正弦信號的各功能模塊和頂層原理圖; 2、 利用實驗板上的TLC7259轉換器,將1中得到的正弦信號,通過D/A轉換,通過ME5534濾波后在示波器上觀察; 3、 輸出波形要求: 在輸入時鐘頻率為16KHz時,輸出正弦波分辨率達到1Hz; 在輸入時鐘頻率為4MHz時,輸出正弦波分辨率達到256Hz; 4、 通過RS232C通信,實現(xiàn)FPGA和PC機之間串行通信,從而實現(xiàn)用PC機改變頻率控制字,實現(xiàn)對輸出正弦波頻率的控制。
上傳時間: 2013-09-06
上傳用戶:zhuimenghuadie
轉速傳感器信號隔離變送器,正弦波整形 主要特性: >> 轉速傳感器信號直接輸入,整形調理方波信號 >> 200mV峰值微弱信號的放大與整形 >> 正弦波、鋸齒波信號輸入,方波信號輸出 >> 不改變原波形頻率,響應速度快 >> 電源、信號:輸入/輸出 3000VDC三隔離 >> 供電電源:5V、12V、15V或24V直流單電源供電 >> 低成本、小體積,使用方便,可靠性高 >> 標準DIN35 導軌式安裝 >> 尺寸:106.7x79.0x25.0mm >> 工業(yè)級溫度范圍: - 45 ~ + 85 ℃ 應用: >> 轉速傳感器信號隔離、采集及變換 >> 汽車速度測量 >> 汽車ABS防抱死制動系統(tǒng) >> 轉速信號放大與整形 >> 地線干擾抑制 >> 電機轉速監(jiān)測系統(tǒng) >> 速度測量與報警 >> 信號無失真變送和傳輸 產品選型表: DIN11 IAP – S□ - P□ – O□ 輸入信號 供電電源 輸出信號 特點 代碼 Power 代碼 特點 代碼 正負信號輸入,正弦波輸入 幅度峰峰值(VP-P):200mV~50V S1 24VDC P1 輸出電平0-5V O1 單端信號輸入, 幅度峰峰值(VP-P):5V S2 12VDC P2 輸出電平0-12V O2 單端信號輸入, 幅度峰峰值(VP-P):12V S3 5VDC P3 輸出電平0-24V O3 單端信號輸入, 幅度峰峰值(VP-P):24V S4 15VDC P4 集電極開路輸出 O4 用戶自定義 Su 用戶自定義 Ou 產品選型舉例: 例 1:輸入:轉速傳感器,正弦波VP-P:200mV~10V;電源:24V ;輸出:0-5V電平 型號:DIN11 IAP S1-P1-O1 例 2:輸入:轉速傳感器,正弦波VP-P:200mV~10V;電源:12V ;輸出:0-24V電平 型號:DIN11 IAP S1-P2-O3 例 3:輸入:0-5V電平;電源:24V ;輸出:0-24V電平 型號:DIN11 IAP S2-P1-O3 例 4:輸入:0-5V電平;電源:12V ;輸出:集電極開路輸出 型號:DIN11 IAP S2-P2-O4 例 5:輸入:用戶自定義;電源:24V ;輸出:用戶自定義 型號:DIN11 IAP Su-P1-Ou
上傳時間: 2013-10-22
上傳用戶:hebanlian
電位計訊號轉換器 AT-PM1-P1-DN-ADL 1.產品說明 AT系列轉換器/分配器主要設計使用于一般訊號迴路中之轉換與隔離;如 4~20mA、0~10V、熱電偶(Type K, J, E, T)、熱電阻(Rtd-Pt100Ω)、荷重元、電位計(三線式)、電阻(二線式)及交流電壓/電流等訊號,機種齊全。 此款薄型設計的轉換器/分配器,除了能提供兩組訊號輸出(輸出間隔離)或24V激發(fā)電源供傳送器使用外,切換式電源亦提供了安裝的便利性。上方并設計了電源、輸入及輸出指示燈及可插拔式接線端子方便現(xiàn)場施工及工作狀態(tài)檢視。 2.產品特點 可選擇帶指撥開關切換,六種常規(guī)輸出信號0-5V/0~10V/1~5V/2~10V/4~20mA/ 0~20mA 可自行切換。 雙回路輸出完全隔離,可選擇不同信號。 設計了電源、輸入及輸出LED指示燈,方便現(xiàn)場工作狀態(tài)檢視。 規(guī)格選擇表中可指定選購0.1%精度 17.55mm薄型35mm導軌安裝。 依據CE國際標準規(guī)范設計。 3.技術規(guī)格 用途:信號轉換及隔離 過載輸入能力:電流:10×額定10秒 第二組輸出:可選擇 輸入范圍:P1:0 Ω ~ 50.0 Ω / ~ 2.0 KΩ P2:0 Ω ~ 2.0 KΩ / ~ 100.0 KΩ 精確度: ≦±0.2% of F.S. ≦±0.1% of F.S. 偵測電壓:1.6V 輸入耗損: 交流電流:≤ 0.1VA; 交流電壓:≤ 0.15VA 反應時間: ≤ 250msec (10%~90% of FS) 輸出波紋: ≤ ±0.1% of F.S. 滿量程校正范圍:≤ ±10% of F.S.,2組輸出可個別調整 零點校正范圍:≤ ±10% of F.S.,2組輸出可個別調整 隔離:AC 2.0 KV 輸出1與輸出2之間 隔離抗阻:DC 500V 100MΩ 工作電源: AC 85~265V/DC 100~300V, 50/60Hz 或 AC/DC 20~56V (選購規(guī)格) 消耗功率: DC 4W, AC 6.0VA 工作溫度: 0~60 ºC 工作濕度: 20~95% RH, 無結露 溫度系數: ≤ 100PPM/ ºC (0~50 ºC) 儲存溫度: -10~70 ºC 保護等級: IP 42 振動測試: 1~800 Hz, 3.175 g2/Hz 外觀尺寸: 94.0mm x 94.0mm x 17.5mm 外殼材質: ABS防火材料,UL94V0 安裝軌道: 35mm DIN導軌 (EN50022) 重量: 250g 安全規(guī)范(LVD): IEC 61010 (Installation category 3) EMC: EN 55011:2002; EN 61326:2003 EMI: EN 55011:2002; EN 61326:2003 常用規(guī)格:AT-PM1-P1-DN-ADL 電位計訊號轉換器,一組輸出,輸入范圍:0 Ω ~ 50.0 Ω / ~ 2.0 KΩ,輸出一組輸出4-20mA,工作電源AC/DC20-56V
上傳時間: 2013-11-05
上傳用戶:feitian920
交流功率因數轉換器 特點: 精確度0.25%滿刻度 ±0.25o 多種輸入,輸出選擇 輸入與輸出絕緣耐壓2仟伏特/1分鐘 沖擊電壓測試5仟伏特(1.2x50us) (IEC255-4,ANSI C37.90a/1974) 突波電壓測試2.5仟伏特(0.25ms/1MHz) (IEC255-4) 尺寸小,穩(wěn)定性高 主要規(guī)格: 精確度: 0.25% F.S. ±0.25°(23 ±5℃) 輸入負載: <0.2VA (Voltage) <0.2VA (Current) 最大過載能力: Current related input: 3 x rated continuous 10 x rated 30 sec. 25 x rated 3sec. 50 x rated 1sec. Voltage related input:maximum 2 x rated continuous 輸出反應速度: < 250ms(0~90%) 輸出負載能力: < 10mA for voltage mode < 10V for current mode 輸出之漣波: < 0.1% F.S. 歸零調整范圍: 0~ ±5% F.S. 最大值調整范圍: 0~ ±10% F.S. 溫度系數: 100ppm/℃ (0~50℃) 隔離特性: Input/Output/Power/Case 絕緣抗阻: >100Mohm with 500V DC 絕緣耐壓能力: 2KVac/1 min. (input/output/power/case) 突波測試: ANSI C37.90a/1974,DIN-IEC 255-4 impulse voltage 5KV(1.2x50us) 使用環(huán)境條件: -20~60℃(20 to 90% RH non-condensed) 存放環(huán)境條件: -30~70℃(20 to 90% RH non-condensed) CE認證: EN 55022:1998/A1:2000 Class A EN 61000-3-2:2000 EN 61000-3-3:1995/A1:2001 EN 55024:1998/A1:2001
上傳時間: 2013-10-22
上傳用戶:thing20