亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

高溫合成

  • 基于BOOST變換器的高功率因數(shù)軟開關(guān)電源的研究.rar

    隨著電力電子技術(shù)的發(fā)展,對大功率、高性能的開關(guān)電源要求也越來越高。功率因數(shù)校正(PFC)技術(shù)是當(dāng)前電力電子技術(shù)研究的熱點問題。大多數(shù)電力電子裝置通過整流器與電網(wǎng)接口,而傳統(tǒng)的二極管或晶閘管整流裝置會產(chǎn)生大量的諧波電流,對電網(wǎng)造成污染。許多國家和國際組織相繼制定了一系列限制用電設(shè)備諧波的標(biāo)準(zhǔn)。有源功率因數(shù)校正技術(shù)能夠有效的消除整流裝置的諧波,因此具有廣泛的應(yīng)用前景。 本文首先分析了開關(guān)電源的發(fā)展現(xiàn)狀及發(fā)展要求,詳細(xì)地闡述了開關(guān)電源的基本構(gòu)成和基本組態(tài)。然后研究了ZVT-Boost軟開關(guān)PFC電路的基本結(jié)構(gòu)、基本工作原理及軟開關(guān)實現(xiàn)原理,在此基礎(chǔ)上確定了主電路結(jié)構(gòu),并制定了控制系統(tǒng)方案。 鑒于功率要求,本文采用兩級PFC電路。因此對常見的DC-DC變換器的拓?fù)浣Y(jié)構(gòu)、原理特性進(jìn)行分析。并針對各自的變換器建立了簡化模型,基于所建立的模型分析了變換器的特性,列出各變換器的優(yōu)缺點及在設(shè)計開關(guān)電源時的選用原則。最后,對所設(shè)計的系統(tǒng)進(jìn)行了仿真分析。 本文根據(jù)用戶的要求研究設(shè)計了一種大功率高性能開關(guān)電源。該開關(guān)電源分為前級和后級,前級為采用BOOST結(jié)構(gòu)的單相有源功率因數(shù)校正電路,后級為采用移相控制軟開關(guān)技術(shù)的全橋變換器。最后研制出了實驗樣機,并給出了實驗樣機的功率因數(shù)校正電路和移相全橋軟開關(guān)變換電路的實驗波形。

    標(biāo)簽: BOOST 變換器 高功率因數(shù)

    上傳時間: 2013-04-24

    上傳用戶:朗朗乾坤

  • 高強度氣體燈電子鎮(zhèn)流器的研究與開發(fā).rar

    隨著綠色工程的實施,在照明領(lǐng)域,已將電力電子技術(shù)廣泛應(yīng)用到電氣照明中去,所以尋找綠色、高效、長壽命、光色好等優(yōu)點的照明設(shè)備已成為必然。高強度氣體放電燈(High-Intensity-Discharge)由于光效高而節(jié)能,已經(jīng)在照明領(lǐng)域取得廣泛的應(yīng)用。但傳統(tǒng)的電感鎮(zhèn)流器存在諸多缺點,故與之配套的HID燈電子鎮(zhèn)流器的開發(fā)成為研究的熱點,本文對基于數(shù)字控制的HID燈電子鎮(zhèn)流器進(jìn)行了研究與設(shè)計。 本文第二章闡述了氣體放電的基礎(chǔ)知識和電光源的基本參數(shù)。比較了電子電感鎮(zhèn)流器的優(yōu)缺點,針對HID燈對電子鎮(zhèn)流器的要求,介紹了電子鎮(zhèn)流器基本原理和發(fā)展趨勢。第三章對高強度氣體放電燈的關(guān)鍵技術(shù)進(jìn)行了研究。首先是對電子鎮(zhèn)流器的拓?fù)浣Y(jié)構(gòu)進(jìn)行分析與比較,選定了傳統(tǒng)的三級結(jié)構(gòu)進(jìn)行設(shè)計,其次是對電子鎮(zhèn)流器的核心-逆變器的結(jié)構(gòu)進(jìn)行了分析,選定了全橋逆變結(jié)構(gòu),再次是對HID燈的各種點火電路的結(jié)構(gòu)進(jìn)行分析,本文選定了用單片機進(jìn)行控制的點火的方式;最后是對燈的聲諧振進(jìn)行了各種方式的比較與分析,給出通過數(shù)字調(diào)頻的方式來抑制聲諧振理論分析。第四章主要通過比較各種功率因數(shù)校正的優(yōu)缺點,并采取了基于boost結(jié)構(gòu)的臨界功率因數(shù)校正。第五章對HID燈啟動工作過程進(jìn)行了分析,提出了三段線性控制的策略,給出了控制的理論分析;比較了間接和直接兩種控制恒功率的方法,選定間接控制方式。第六章主要對數(shù)字控制的250W金鹵燈的樣機的實現(xiàn)中的部分電路(保護(hù)、驅(qū)動、逆變)進(jìn)行分析與設(shè)計并給出了部分電路圖和軟件設(shè)計的流程圖以及部分仿真與試驗波形。最后在第七章對試驗結(jié)果進(jìn)行分析,對本文的設(shè)計進(jìn)行小結(jié)以及對未來的展望。

    標(biāo)簽: 氣體 電子鎮(zhèn)流器

    上傳時間: 2013-07-16

    上傳用戶:heart_2007

  • 電流型高電壓隔離開關(guān)電源.rar

    本課題為電流型高電壓隔離電源,它是基于交流電流母線的分布式系統(tǒng),能夠整定短路電流,適應(yīng)高電壓工作環(huán)境的隔離電源。本論文介紹了該課題的應(yīng)用場合,簡要介紹了分布式系統(tǒng)的種類及各自優(yōu)勢,以及已有的電流型副邊穩(wěn)壓電路相關(guān)的研究成果,并在此基礎(chǔ)上提出了本課題的研究目標(biāo)。 本篇論文主要針對課題方案的三個方面進(jìn)行論述,分別闡述如下: 一,母線電流產(chǎn)生系統(tǒng)與電流型副邊開關(guān)電路的匹配問題,包括各部分電路的功能介紹、電流型副邊開關(guān)電路的小信號等效電路的建模、高電壓隔離變壓器及磁元件的選擇; 二,模塊體積小型化有利于高壓部件的設(shè)計安裝和EMS防護(hù)。為了省去體積較大的輔助電源部分,本課題采用了副邊電路自供電的方式。在低壓自供電方式下,利用比較器、TLA31等器件產(chǎn)生多路同步三角波以及開關(guān)驅(qū)動PWM脈沖。對自供電方式下的三角波振蕩器進(jìn)行比較,并對三角波振蕩器電路模塊進(jìn)行了建模以及系統(tǒng)反饋補償; 三,在本方案中實現(xiàn)了電流源拓?fù)涞耐秸骷夹g(shù),利用PMOS管替代續(xù)流二極管,減小了電路的損耗、散熱器的使用以及模塊的體積。 本篇論文對本課題設(shè)計的核心部分進(jìn)行了比較詳細(xì)的介紹和分析,具體的參數(shù)計算方法也一一列出。最終,論文以研究目標(biāo)為方向,通過一系列的改進(jìn)措施,基本實現(xiàn)了課題要求。

    標(biāo)簽: 電流型 高電壓 隔離開關(guān)

    上傳時間: 2013-06-24

    上傳用戶:wmwai1314

  • LCC諧振變換器在大功率高輸出電壓場合的應(yīng)用研究.rar

    高壓直流電源廣泛應(yīng)用于醫(yī)用X射線機,工業(yè)靜電除塵器等設(shè)備。傳統(tǒng)的工頻高壓直流電源體積大、重量重、變換效率低、動態(tài)性能差,這些缺點限制了它的進(jìn)一步應(yīng)用。而高頻高壓直流電源克服了前者的缺點,已成為高壓大功率電源的發(fā)展趨勢。本文對應(yīng)用在高輸出電壓大功率場合的開關(guān)電源進(jìn)行研究,對主電路拓?fù)洹⒖刂撇呗?、工藝結(jié)構(gòu)等方面做出詳細(xì)討論,提出實現(xiàn)方案。 高壓變壓器由于匝比很大,呈現(xiàn)出較大的寄生參數(shù),如漏感和分布電容,若直接應(yīng)用在PWM變換器中,漏感的存在會產(chǎn)生較高的電壓尖峰,損壞功率器件,分布電容的存在會使變換器有較大的環(huán)流,降低了變換器的效率。本文選用具有電容型濾波器的LCC諧振變換器為主電路拓?fù)洌梢岳酶邏鹤儔浩髦新└泻头植茧娙葑鳛橹C振元件,減少了元件的數(shù)量,從而減小了變換器的體積。 LCC諧振變換器采用變頻控制策略,可以工作在電感電流連續(xù)模式(CCM)和電感電流斷續(xù)模式(DCM),本文對這兩種工作模式進(jìn)行詳細(xì)討論。針對CCM下的LCC諧振變換器,本文分析其工作原理,用基波近似法推導(dǎo)出變換器的穩(wěn)態(tài)模型,給出一種詳盡的設(shè)計方法,可以保證所有開關(guān)管在全負(fù)載范圍內(nèi)實現(xiàn)零電壓開關(guān),減小電流應(yīng)力和開關(guān)頻率的變化范圍,并進(jìn)行仿真驗證。基于該變換器,研制出輸出電壓為41kV,功率為23kW的高頻高壓電源,實驗結(jié)果驗證了分析與設(shè)計的正確性。 針對DCM下的LCC諧振變換器,本文分析其工作原理,該變換器可以實現(xiàn)零電流開關(guān),有效地減小IGBT拖尾電流造成的關(guān)斷損耗。論文通過電路狀態(tài)方程推導(dǎo)出變換器的電壓傳輸比特性,在此基礎(chǔ)上對主電路參數(shù)進(jìn)行設(shè)計,并進(jìn)行仿真驗證?;谠撟儞Q器,研制出輸出電壓為66kV,功率為72kW的高頻高壓電源,實驗結(jié)果表明了方案的可行性。

    標(biāo)簽: LCC 諧振變換器 大功率

    上傳時間: 2013-04-24

    上傳用戶:edrtbme

  • 基于DSP控制電梯專用變頻器研究.rar

    本文以電機控制DSPTMS320LF2407為核心,結(jié)合相關(guān)外圍電路,運用新型SVPWM控制方法,設(shè)計電梯專用變頻器。為了達(dá)到電梯專用變頻器大轉(zhuǎn)矩、高性能的要求,在硬件上提高系統(tǒng)的實時性、抗干擾性和高精度性;在軟件上采用新型SVPWM控制方法,以消除死區(qū)的負(fù)面影響,另外單神經(jīng)元PID控制器應(yīng)用于速度環(huán),對速度的調(diào)節(jié)作用有明顯改善。通過軟硬件結(jié)合的方式,改善電機輸出轉(zhuǎn)矩,使電梯控制系統(tǒng)的性能得到提高。 系統(tǒng)主電路主要由三部分組成:整流部分、中間濾波部分和逆變部分,分別用6RI75G-160整流橋模塊、電解電容電路和7MBP50RA120IPM模塊實現(xiàn)。并設(shè)計有起動時防止沖擊電流的保護(hù)電路,以及防止過壓、欠壓的保護(hù)電路。其中,對逆變模塊IPM的驅(qū)動控制是控制電路的核心,也是系統(tǒng)實現(xiàn)的主要部分。控制電路以DSP為核心,由IPM驅(qū)動隔離控制電路、轉(zhuǎn)速位置檢測電路、電流檢測電路、電源電路、顯示電路和鍵盤電路組成。對IPM驅(qū)動、隔離、控制的效果,直接影響系統(tǒng)的性能,反映了變頻器的性能,所以這部分是改善變頻器性能的關(guān)鍵部分。另外,本課題擬定的被控對象是永磁同步電動機(PMSM),要對系統(tǒng)實現(xiàn)SVPWM控制,依賴于轉(zhuǎn)子位置的準(zhǔn)確、實時檢測,只有這樣,才能實現(xiàn)正確的矢量變換,準(zhǔn)確的輸出PWM脈沖,使合成矢量的方向與磁場方向保持實時的垂直,達(dá)到良好的控制性能,因此,轉(zhuǎn)子位置檢測是提高變頻器性能的一個重要環(huán)節(jié)。 系統(tǒng)采用的控制方式是SVPWM控制。本文從SVPWM原理入手,分析了死區(qū)時間對SVPWM控制的負(fù)面作用,采用了一種新型SVPWM控制方法,它將SVPWM的180度導(dǎo)通型和120度導(dǎo)通型結(jié)合起來,從而達(dá)到既可以消除死區(qū)影響,又可以提高電源利用率的目的。另外,在速度調(diào)節(jié)環(huán)節(jié),采用單神經(jīng)元PID控制器,通過反復(fù)的仿真證明,在調(diào)速比不是很大的情況下,其對速度環(huán)的調(diào)節(jié)作用明顯優(yōu)于傳統(tǒng)PID控制器。 通過實驗證明,系統(tǒng)基本上達(dá)到高性能的控制要求,適合于電梯控制系統(tǒng)。

    標(biāo)簽: DSP 控制 變頻器

    上傳時間: 2013-05-21

    上傳用戶:trepb001

  • 基于FPGA函數(shù)信號發(fā)生器的設(shè)計與實現(xiàn).rar

    任意波形發(fā)生器已成為現(xiàn)代測試領(lǐng)域應(yīng)用最為廣泛的通用儀器之一,代表了信號源的發(fā)展方向。直接數(shù)字頻率合成(DDS)是二十世紀(jì)七十年代初提出的一種全數(shù)字的頻率合成技術(shù),其查表合成波形的方法可以滿足產(chǎn)生任意波形的要求。由于現(xiàn)場可編程門陣列(FPGA)具有高集成度、高速度、可實現(xiàn)大容量存儲器功能的特性,能有效地實現(xiàn)DDS技術(shù),極大的提高函數(shù)發(fā)生器的性能,降低生產(chǎn)成本。 本文首先介紹了函數(shù)波形發(fā)生器的研究背景和DDS的理論。然后詳盡地敘述了用FPGA完成DDS模塊的設(shè)計過程,接著分析了整個設(shè)計中應(yīng)處理的問題,根據(jù)設(shè)計原理就功能上進(jìn)行了劃分,將整個儀器功能劃分為控制模塊、外圍硬件、FPGA器件三個部分來實現(xiàn)。最后就這三個部分分別詳細(xì)地進(jìn)行了闡述。 在實現(xiàn)過程中,本設(shè)計選用了Altera公司的EP2C35F672C6芯片作為產(chǎn)生波形數(shù)據(jù)的主芯片,充分利用了該芯片的超大集成性和快速性。在控制芯片上選用了三星公司的上S3C2440作為控制芯片。本設(shè)計中,F(xiàn)PGA芯片的設(shè)計和與控制芯片的接口設(shè)計是一個難點,本文利用Altera的設(shè)計工具QuartusⅡ并結(jié)合Verilog—HDL語言,采用硬件編程的方法很好地解決了這一問題。論文最后給出了系統(tǒng)的測量結(jié)果,并對誤差進(jìn)行了一定分析,結(jié)果表明,可輸出步進(jìn)為0.01Hz,頻率范圍0.01Hz~20MHz的正弦波、三角波、鋸齒波、方波,或0.01Hz~20KHz的任意波。通過實驗結(jié)果表明,本設(shè)計達(dá)到了預(yù)定的要求,并證明了采用軟硬件結(jié)合,利用FPGA技術(shù)實現(xiàn)任意波形發(fā)生器的方法是可行的。

    標(biāo)簽: FPGA 函數(shù)信號發(fā)生器

    上傳時間: 2013-08-03

    上傳用戶:1079836864

  • 基于51單片機的高精度紅外測溫系統(tǒng)設(shè)計.rar

    基于51單片機的高精度紅外測溫系統(tǒng)設(shè)計,非接觸式測溫設(shè)計。

    標(biāo)簽: 51單片機 高精度 紅外測溫

    上傳時間: 2013-05-19

    上傳用戶:hanli8870

  • FPGA內(nèi)全數(shù)字延時鎖相環(huán)的設(shè)計.rar

    現(xiàn)場可編程門陣列(FPGA)的發(fā)展已經(jīng)有二十多年,從最初的1200門發(fā)展到了目前數(shù)百萬門至上千萬門的單片F(xiàn)PGA芯片?,F(xiàn)在,F(xiàn)PGA已廣泛地應(yīng)用于通信、消費類電子和車用電子類等領(lǐng)域,但國內(nèi)市場基本上是國外品牌的天下。 在高密度FPGA中,芯片上時鐘分布質(zhì)量變的越來越重要,時鐘延遲和時鐘偏差已成為影響系統(tǒng)性能的重要因素。目前,為了消除FPGA芯片內(nèi)的時鐘延遲,減小時鐘偏差,主要有利用延時鎖相環(huán)(DLL)和鎖相環(huán)(PLL)兩種方法,而其各自又分為數(shù)字設(shè)計和模擬設(shè)計。雖然用模擬的方法實現(xiàn)的DLL所占用的芯片面積更小,輸出時鐘的精度更高,但從功耗、鎖定時間、設(shè)計難易程度以及可復(fù)用性等多方面考慮,我們更愿意采用數(shù)字的方法來實現(xiàn)。 本論文是以Xilinx公司Virtex-E系列FPGA為研究基礎(chǔ),對全數(shù)字延時鎖相環(huán)(DLL)電路進(jìn)行分析研究和設(shè)計,在此基礎(chǔ)上設(shè)計出具有自主知識產(chǎn)權(quán)的模塊電路。 本文作者在一年多的時間里,從對電路整體功能分析、邏輯電路設(shè)計、晶體管級電路設(shè)計和仿真以及最后對設(shè)計好的電路仿真分析、電路的優(yōu)化等做了大量的工作,通過比較DLL與PLL、數(shù)字DLL與模擬DLL,深入的分析了全數(shù)字DLL模塊電路組成結(jié)構(gòu)和工作原理,設(shè)計出了符合指標(biāo)要求的全數(shù)字DLL模塊電路,為開發(fā)自我知識產(chǎn)權(quán)的FPGA奠定了堅實的基礎(chǔ)。 本文先簡要介紹FPGA及其時鐘管理技術(shù)的發(fā)展,然后深入分析對比了DLL和PLL兩種時鐘管理方法的優(yōu)劣。接著詳細(xì)論述了DLL模塊及各部分電路的工作原理和電路的設(shè)計考慮,給出了全數(shù)字DLL整體架構(gòu)設(shè)計。最后對DLL整體電路進(jìn)行整體仿真分析,驗證電路功能,得出應(yīng)用參數(shù)。在設(shè)計中,用Verilog-XL對部分電路進(jìn)行數(shù)字仿真,Spectre對進(jìn)行部分電路的模擬仿真,而電路的整體仿真工具是HSIM。 本設(shè)計采用TSMC0.18μmCMOS工藝庫建模,設(shè)計出的DLL工作頻率范圍從25MHz到400MHz,工作電壓為1.8V,工作溫度為-55℃~125℃,最大抖動時間為28ps,在輸入100MHz時鐘時的功耗為200MW,達(dá)到了國外同類產(chǎn)品的相應(yīng)指標(biāo)。最后完成了輸出電路設(shè)計,可以實現(xiàn)時鐘占空比調(diào)節(jié),2倍頻,以及1.5、2、2.5、3、4、5、8、16時鐘分頻等時鐘頻率合成功能。

    標(biāo)簽: FPGA 全數(shù)字 延時

    上傳時間: 2013-06-10

    上傳用戶:yd19890720

  • 基于FPGA的任意波形發(fā)生器的研究與設(shè)計.rar

    隨著科學(xué)技術(shù)的飛速發(fā)展,電子測量技術(shù)被廣泛應(yīng)用在電子、機械、醫(yī)療、測控及航天等各個領(lǐng)域,而電子測量技術(shù)要用到各種形式的高質(zhì)量信號源,因此任意波形發(fā)生器的研制就具有非常重要的現(xiàn)實意義。 本文便是基于DDS(DirectDigitalSynthesis)技術(shù)進(jìn)行任意波形發(fā)生器研制的。要求可以產(chǎn)生正弦波、方波、三角波與鋸齒波等常規(guī)波形,而且能夠產(chǎn)生任意波形,從而滿足研究的需要。具體工作如下: (一)介紹國內(nèi)外關(guān)于任意波形發(fā)生器研究的發(fā)展情況,闡述頻率合成技術(shù)的各種方式與技術(shù)對比情況,并選定直接數(shù)字頻率合成技術(shù)進(jìn)行研制。 (二)介紹系統(tǒng)的硬件設(shè)計構(gòu)成與功能實現(xiàn),并對系統(tǒng)部件進(jìn)行逐一細(xì)述。選用單片機作為控制模塊,使用FPGA實現(xiàn)DDS功能作為技術(shù)核心,并對外圍電路的設(shè)計與接口技術(shù)進(jìn)行分析。 (三)講述DDS的工作原理、工作特點與技術(shù)指標(biāo),并基于FPGA芯片EP1C3T144C8進(jìn)行設(shè)計,通過使用相位累加器與波形ROM等模塊,實現(xiàn)DDS功能。同時輔以使能模塊與行列式鍵盤,實現(xiàn)各種波形的靈活輸出。 (四)給出系統(tǒng)產(chǎn)生的測試數(shù)據(jù),并對影響頻譜純度的雜散與噪聲產(chǎn)生的原因進(jìn)行分析。

    標(biāo)簽: FPGA 任意波形發(fā)生器

    上傳時間: 2013-04-24

    上傳用戶:diets

  • 基于FPGA的軟件無線電數(shù)字接收機的研究.rar

    在現(xiàn)代電子系統(tǒng)中,數(shù)字化已經(jīng)成為發(fā)展的必然趨勢,接收機數(shù)字化是電子系統(tǒng)數(shù)字化中的一項重要內(nèi)容,對數(shù)字化接收機的研究具有重要的意義。隨著數(shù)字化理論和微電子技術(shù)的迅速發(fā)展,高速的中頻數(shù)字化接收機的實現(xiàn)已經(jīng)成為可能。本文研究了一種基于FPGA的軟件無線電數(shù)字接收平臺的設(shè)計,并著重研究了其中數(shù)字中頻處理單元的設(shè)計和實現(xiàn)。FPGA器件具有設(shè)計靈活、開發(fā)周期短和開發(fā)成本低等優(yōu)點,所以廣泛應(yīng)用于各種通信系統(tǒng)中。相比于傳統(tǒng)的DSP串行結(jié)構(gòu),F(xiàn)PGA能夠進(jìn)行流水線性設(shè)計,對數(shù)據(jù)進(jìn)行并行處理,所以FPGA在進(jìn)行數(shù)據(jù)量大,要求實時處理的系統(tǒng)設(shè)計時有很大的優(yōu)勢。 本文首先首先分析了軟件無線電當(dāng)前的發(fā)展趨勢及技術(shù)現(xiàn)狀,針對存在的處理速度跟不上的DSP瓶頸問題,提出了中頻軟件無線電的FPGA實現(xiàn)方案。本文以FPGA實現(xiàn)為重點,在深入分析軟件無線電相關(guān)理論的基礎(chǔ)上,著重研究和完成了中頻軟件無線電數(shù)字接收平臺兩大模塊的FPGA實現(xiàn):數(shù)字下變頻相關(guān)模塊和數(shù)字調(diào)制解調(diào)模塊。其中,在深入研究數(shù)字下變頻實現(xiàn)結(jié)構(gòu)的基礎(chǔ)上,首先對數(shù)字下變頻模塊的數(shù)控振蕩器(NCO)采用了直接頻率合成技術(shù)(DDS)實現(xiàn),其頻率分辨率高,靈活,易于實現(xiàn);高效抽取濾波器組由積分梳狀濾波器(CIC),半帶濾波器(HB),F(xiàn)IR濾波器組成。對積分梳狀濾波器(CIC)本文采用了Hogenaur“剪除”理論對內(nèi)部寄存器的位寬進(jìn)行改進(jìn),極大地節(jié)約了資源,提高了運行速率。對FIR濾波器和半帶濾波器采用了(DA)分布式算法,它的運行速度只與數(shù)據(jù)的寬度有關(guān),只有加減法運算和二進(jìn)制除法,既縮減了系統(tǒng)資源又大大節(jié)省了運算時間,實現(xiàn)了高效的實時處理。對數(shù)字調(diào)制解調(diào)模塊,重點研究和完成了2ASK和2FSK的調(diào)制解調(diào)的FPGA實現(xiàn),模塊有很好的通用性,能方便地移植到其它的系統(tǒng)中。在文章的最后還對整個系統(tǒng)進(jìn)行了Matlab仿真,驗證了系統(tǒng)設(shè)計思想的正確性。在系統(tǒng)各個關(guān)鍵模塊的設(shè)計過程中,都是先依據(jù)一定的設(shè)計指標(biāo)進(jìn)行verilog編程,然后再在Quartus軟件中編譯,時序仿真測試,并與Matlab仿真結(jié)果進(jìn)行對比,驗證設(shè)計的正確性。

    標(biāo)簽: FPGA 軟件無線電 數(shù)字接收機

    上傳時間: 2013-05-18

    上傳用戶:450976175

亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美日韩一区二区高清| 亚洲在线观看免费| 欧美激情一区二区三区在线视频| 欧美一区2区三区4区公司二百| 亚洲伊人一本大道中文字幕| 亚洲一区久久久| 亚洲免费视频成人| 嫩草影视亚洲| 欧美激情综合色| 欧美精品一区二区三区高清aⅴ| 欧美电影在线观看| 欧美午夜精品电影| 国产精品自在在线| 激情五月***国产精品| 亚洲高清视频的网址| 亚洲精品中文字幕在线| 亚洲国产日韩一级| 一区二区黄色| 欧美在线观看视频| 欧美成人综合在线| 欧美亚一区二区| 国外成人在线视频| 亚洲精品国产系列| 午夜视频在线观看一区二区三区 | 久久se精品一区精品二区| 久久久久久久97| 欧美激情一二三区| 国产精品视频一二三| 红桃视频国产精品| 亚洲乱码国产乱码精品精可以看 | 欧美日韩mp4| 国产精品你懂的在线欣赏| 国产精品久久久久秋霞鲁丝| 国产日本欧美一区二区三区| 亚洲精品国产精品乱码不99按摩 | 女仆av观看一区| 欧美日韩国产三级| 国产日韩精品一区二区三区| 亚洲精品一区二区三区在线观看| 亚洲欧美日本精品| 欧美国产日韩视频| 国产亚洲在线| 亚洲图片欧洲图片av| 久久精品中文| 国产精品久久久久久久久动漫| 在线看片日韩| 午夜精品久久久久久| 欧美第一黄网免费网站| 国产视频一区三区| 亚洲尤物在线| 欧美日韩日本国产亚洲在线| 国产精品专区第二| 亚洲视频一起| 欧美连裤袜在线视频| 激情懂色av一区av二区av| 亚洲一区二区毛片| 毛片一区二区三区| 国产一区二区福利| 亚洲欧美中文另类| 亚洲人成网站在线播| 性久久久久久久久久久久| 欧美日韩在线电影| 亚洲精品视频在线播放| 麻豆九一精品爱看视频在线观看免费| 久久久午夜电影| 国产乱码精品一区二区三区忘忧草 | 欧美激情91| 国外精品视频| 久久国产毛片| 国内成人精品视频| 午夜国产精品影院在线观看| 欧美亚洲第一区| 中文欧美在线视频| 欧美日韩一区二区三区免费| 国产欧美日韩精品一区| 99精品99| 国产精品v欧美精品v日韩| 在线视频欧美一区| 国产精品丝袜白浆摸在线| 午夜精品久久久久久久久久久| 国产精品二区影院| 亚洲欧美国产毛片在线| 国产美女精品视频| 欧美专区第一页| 伊人婷婷欧美激情| 欧美jizz19hd性欧美| 亚洲老板91色精品久久| 欧美日韩视频在线第一区| a4yy欧美一区二区三区| 欧美肉体xxxx裸体137大胆| 亚洲中字黄色| 国产精品嫩草99av在线| 午夜综合激情| 伊人久久噜噜噜躁狠狠躁| 欧美a级在线| 亚洲一区二区三区免费视频| 国产亚洲欧美日韩日本| 欧美日韩天天操| 久久视频在线看| 亚洲与欧洲av电影| 亚洲国产天堂网精品网站| 国产日韩欧美日韩| 欧美日韩免费在线| 欧美成人国产| 久久久久久**毛片大全| 亚洲欧美清纯在线制服| 亚洲精品永久免费精品| 激情丁香综合| 国产日韩欧美一二三区| 欧美日韩在线高清| 欧美黄在线观看| 久久亚洲一区二区三区四区| 亚洲欧美日韩精品综合在线观看| 最新亚洲视频| 亚洲第一区在线观看| 韩国av一区二区| 国产乱肥老妇国产一区二| 欧美日韩成人综合| 欧美成人一区二免费视频软件| 欧美综合激情网| 午夜精品在线视频| 亚洲视频一区| 一区二区三区四区国产| 日韩视频在线观看国产| 亚洲欧洲一区| 亚洲国产一区二区三区在线播| 国产一区二区三区成人欧美日韩在线观看 | 激情欧美一区二区三区| 国产日韩一区二区三区在线| 国产精品美女久久久| 欧美性做爰猛烈叫床潮| 欧美日韩亚洲激情| 欧美日韩国产黄| 欧美日韩三级电影在线| 欧美激情网友自拍| 女生裸体视频一区二区三区| 久久综合久久久久88| 老色批av在线精品| 六十路精品视频| 欧美黄色精品| 欧美日韩你懂的| 国产精品地址| 国产精品主播| 国产一区二区三区视频在线观看 | 夜久久久久久| 正在播放亚洲一区| 亚洲一区二区三区高清| 亚洲欧美日韩精品久久奇米色影视| 亚洲一区网站| 久久国产乱子精品免费女| 久久综合久久美利坚合众国| 欧美aⅴ一区二区三区视频| 欧美华人在线视频| 欧美视频一区二区三区…| 国产精品日韩电影| 国产在线精品自拍| 亚洲国产另类 国产精品国产免费| 亚洲国产精品嫩草影院| 99热这里只有精品8| 亚洲男人第一av网站| 久久久久亚洲综合| 欧美理论电影在线观看| 国产精品视频一区二区高潮| 国产真实乱子伦精品视频| 亚洲国产婷婷| 亚洲性视频网站| 久久久蜜臀国产一区二区| 欧美精品亚洲| 国产区亚洲区欧美区| 亚洲高清视频在线观看| 一本色道久久综合狠狠躁篇的优点| 亚洲欧美日韩国产| 久久亚洲国产精品一区二区| 欧美日产在线观看| 国产精品视频内| 亚洲国产精品激情在线观看| 亚洲免费影视| 女女同性女同一区二区三区91| 欧美一区二区三区精品电影| 免费亚洲电影在线| 国产精品美女一区二区| 亚洲第一页在线| 午夜视频一区在线观看| 欧美寡妇偷汉性猛交| 国产精品欧美日韩一区| 亚洲国产一区二区精品专区| 亚洲永久精品大片| 欧美成人一区在线| 国产精品一区二区三区四区五区 | 久久五月天婷婷| 欧美三级日韩三级国产三级| 伊人成人开心激情综合网| 亚洲精品视频一区| 亚洲天堂成人| 狠狠色狠狠色综合日日tαg| 午夜欧美理论片| 日韩一级二级三级| 久久久成人网| 国产精品激情| 亚洲日本理论电影|