LED顯示屏是LED點陣模塊或者像素單元組成的平面顯示屏幕。自從誕生以來,以其亮度高、視角廣、壽命長、性價比高的特點,在交通、廣告、新聞發布、體育比賽、電子景觀等領域得到了廣泛應用。 LED顯示屏控制器作為控制LED屏顯示圖像、數據的關鍵,是整個LED視頻顯示系統的核心。本文研究的是對全彩色同步LED屏的控制,控制LED屏同步顯示在上位機顯示系統中某固定位置處的圖像。根據已有的LED顯示屏及其驅動器的特點,提出了一種可行的方案并進行了設計。系統主要分為兩個部分:視頻信號的獲取,視頻信號的處理。 經過分析比較,決定從顯卡的DVI接口獲得視頻源,視頻源經過DVI解碼芯片TFP401A的解碼后,可以獲得圖像的數字信息,這些信息包括紅、綠、藍三基色的數據以及行同步、場同步、使能等控制信號。這些信號將在視頻信號處理模塊中被使用。 信號處理模塊在接收視頻信號源后,對數據進行處理,最后輸出數據給驅動電路。在信號處理模塊中,采用了可編程邏輯器件FPGA來完成。可編程邏輯器件具有高集成度、高速度、高可靠性、在線可編程(ISP)等特點,所以特別適合于本設計。利用FPGA的可編程性,在FPGA內部劃分了各個小模塊,各小模塊中通過少量的信號進行聯系,這樣就將比較大的系統轉化成許多小的系統,使得設計更加簡單,容易驗證。本文分析了驅動電路所需要的數據的特點,全彩色灰度級的實現方式,決定把系統劃分為視頻源截取、RGB格式轉化、位平面分離、讀SRAM地址發生器、寫SRAM地址發生器、讀寫SRAM選擇控制器、灰度實現等模塊。 最后利用示波器和SignalTap II邏輯分析儀等工具,對系統進行了聯合調試。改進了時序、優化了布局布線,使得系統性能得到了良好的改善。 在分析了所需要的資源的基礎上,課題決定采用Altera的Cyclone EP1C12 FPGA設計視頻信號處理模塊,在Quartus II和modelsim平臺下,用Verilog HDL語言開發。
上傳時間: 2013-05-19
上傳用戶:玉簫飛燕
文章開篇提出了開發背景。認為現在所廣泛應用的開關電源都是基于傳統的分立元件組成的。它的特點是頻率范圍窄、電力小、功能少、器件多、成本較高、精度低,對不同的客戶要求來“量身定做”不同的產品,同時幾乎沒有通用性和可移植性。在電子技術飛速發展的今天,這種傳統的模擬開關電源已經很難跟上時代的發展步伐。 隨著DSP、ASIC等電子器件的小型化、高速化,開關電源的控制部分正在向數字化方向發展。由于數字化,使開關電源的控制部分的智能化、零件的共通化、電源的動作狀態的遠距離監測成為了可能,同時由于它的智能化、零件的共通化使得它能夠靈活地應對不同客戶的需求,這就降低了開發周期和成本。依靠現代數字化控制和數字信號處理新技術,數字化開關電源有著廣闊的發展空間。 在數字化領域的今天,最后一個沒有數字化的堡壘就是電源領域。近年來,數字電源的研究勢頭與日俱增,成果也越來越多。雖然目前中國制造的開關電源占了世界市場的80%以上,但都是傳統的比較低端的模擬電源。高端市場上幾乎沒有我們份額。 本論文研究的主要內容是在傳統開關電源模擬調節器的基礎上,提出了一種新的數字化調節器方案,即基于DSP和FPGA的數字化PID調節器。論文對系統方案和電路進行了較為具體的設計,并通過測試取得了預期結果。測試證明該方案能夠適合本行業時代發展的步伐,使系統電路更簡單,精度更高,通用性更強。同時該方案也可用于相關領域。 本文首先分析了國內外開關電源發展的現狀,以及研究數字化開關電源的意義。然后提出了數字化開關電源的總體設計框圖和實現方案,并與傳統的開關電源做了較為詳細的比較。本論文的設計方案是采用DSP技術和FPGA技術來做數字化PID調節,通過數字化PID算法產生PWM波來控制斬波器,控制主回路。從而取代傳統的模擬PID調節器,使電路更簡單,精度更高,通用性更強。傳統的模擬開關電源是將電流電壓反饋信號做PID調節后--分立元器件構成,采用專用脈寬調制芯片實現PWM控制。電流反饋信號來自主回路的電流取樣,電壓反饋信號來自主回路的電壓采樣。再將這兩個信號分別送至電流調節器和電壓調節器的反相輸入端,用來實現閉環控制。同時用來保證系統的穩定性及實現系統的過流過壓保護、電流和電壓值的顯示。電壓、電流的給定信號則由單片機或電位器提供。再次,文章對各個模塊從理論和實際的上都做了仔細的分析和設計,并給出了具體的電路圖,同時寫出了軟件流程圖以及設計中應該注意的地方。整個系統由DSP板和ADC板組成。DSP板完成PWM生成、PID運算、環境開關量檢測、環境開關量生成以及本地控制。ADC板主要完成前饋電壓信號采集、負載電壓信號采集、負載電流信號采集、以及對信號的一階數字低通濾波。由于整個系統是閉環控制系統,要求采樣速率相當高。本系統采用FPGA來控制ADC,這樣就避免了高速采樣占用系統資源的問題,減輕了DSP的負擔。DSP可以將讀到的ADC信號做PID調節,從而產生PWM波來控制逆變橋的開關速率,從而達到閉環控制的目的。 最后,對數字化開關電源和模擬開關電源做了對比測試,得出了預期結論。同時也提出了一些需要改進的地方,認為該方案在其他相關行業中可以廣泛地應用。模擬控制電路因為使用許多零件而需要很大空間,這些零件的參數值還會隨著使用時間、溫度和其它環境條件的改變而變動并對系統穩定性和響應能力造成負面影響。數字電源則剛好相反,同時數字控制還能讓硬件頻繁重復使用、加快上市時間以及減少開發成本與風險。在當前對產品要求體積小、智能化、共通化、精度高和穩定度好等前提條件下,數字化開關電源有著廣闊的發展空間。本系統來基本上達到了設計要求。能夠滿足較高精度的設計要求。但對于高精度數字化電源,系統還有值得改進的地方,比如改進主控器,提高參考電壓的精度,提高采樣器件的精度等,都可以提高系統的精度。 本系統涉及電子、通信和測控等技術領域,將數字PID算法與電力電子技術、通信技術等有機地結合了起來。本系統的設計方案不僅可以用在電源控制器上,只要是相關的領域都可以采用。
上傳時間: 2013-06-29
上傳用戶:dreamboy36
本課題深入分析了GPS軟件接收機基于FFT并行捕獲算法并詳細闡述了其FPGA的實現。相比于其它的捕獲方案,該方案更好地滿足了信號處理實時性的要求。 論文的主體部分首先簡單分析了擴頻通信系統的基本原理,介紹了GPS系統的組成,詳細闡述了GPS信號的特點,并根據GPS信號的組成特點介紹了接收機的體系結構。其次,通過對GPS接收機信號捕獲方案的深入研究,確定了捕獲速度快且實現復雜度不是很高的基于FFT的并行捕獲方案,并對該方案提出了幾點改進的措施,根據前面的分析,提出了系統的實現方案,利用MATLAB對該系統進行仿真,仿真的結果充分的驗證了方案的可行性。接著,對于捕獲環節中的核心部分—FFT處理器,設計中沒有采用ALTERA提供的IP核,獨立設計實現了基于FPGA的FFT處理器,并通過對一組數據在MATLAB中運算得到結果和FPGA輸出結果相對比,可以驗證該FFT處理器的正確性。再次重點分析了GPS接收機并行捕獲部分的FPGA具體實現,通過捕獲的FPGA時序仿真波形,證明了該系統已經能成功地捕獲到GPS信號。最后,對全文整個研究工作進行總結,并指出以后繼續研究的方向。 本課題雖然是對于GPS接收機的研究,但其原理與GALILEO、北斗等導航系統的接收機相近,因此該課題的研究對我國衛星導航事業的發展起到了積極的推動作用。
上傳時間: 2013-08-06
上傳用戶:青春123
H.264作為新一代視頻編碼標準,相比上一代視頻編碼標準MPEG2,在相同畫質下,平均節約64﹪的碼流。該標準僅設定了碼流的語法結構和解碼器結構,實現靈活性極大,其規定了三個檔次,每個檔次支持一組特定的編碼功能,并支持一類特定的應用,因此。H.264的編碼器的設計可以根據需求的不同而不同。 H.264雖然具有優異的壓縮性能,但是其復雜度卻比一般編碼器高的多。本文對H.264進行了編碼復雜度分析,并統計了整個軟件編碼中計算量的分布。H.264中采用了率失真優化算法,提高了幀內預測編碼的效率。在該算法下進行幀內預測時,為了得到一個宏塊的預測模式,需要進行592次率失真代價計算。因此為了降低幀內預測模式選擇的計算復雜度,本文改進了幀內預測模式選擇算法。實踐證明,在PSNR值的損失可以忽略不計的情況下,該算法相比原算法,幀內編碼時間平均節約60﹪以上,對編碼的實時性有較大幫助。 為了實現實時編碼,考慮到FPGA的高效運算速度和使用靈活性,本文還研究了H.264編碼器基本檔次的FPGA實現。首先研究了H.264編碼器硬件實現架構,并對影響編碼速度,且具有硬件實現優越性的幾個重要部分進行了算法研究和FPGA.實現。本文主要研究了H.264編碼器中整數DCT變換、量化、Zig-Zag掃描、CAVLC編碼以及反量化、逆整數DCT變換等部分。分別對這些模塊進行了綜合和時序仿真,并將驗證后通過的系統模塊下載到Xilinx virtex-Ⅱ Pro的FPGA中,進行了在線測試,驗證了該系統對輸入的殘差數據實時壓縮編碼的功能。 本文對H.264編碼器幀內預測模式選擇算法的改進,算法實現簡單,對軟件編碼的實時性有很大幫助。本文對在單片FPGA上實現H.264編碼器做出了探索性嘗試,這對H.264編碼器芯片的設計有著積極的借鑒性。
上傳時間: 2013-06-13
上傳用戶:夜月十二橋
在合成孔徑雷達的研究和研制工作中,合成孔徑雷達模擬技術具有十分重要的作用。本文以440MHz帶寬線性調頻信號,采樣頻率500MHz高分辨合成孔徑雷達視頻模擬器為研究對象。首先對模擬器的幾項主要技術進行分析,在對點目標回波信號模型分析研究的基礎上,對點目標原始回波數據進行模擬并做了成像驗證,從而為硬件實現提供了正確的信號模型;針對傳統的“波形存儲直讀法”方案,即在計算機平臺上用模擬軟件產生原始回波數據并存儲,再通過計算機接口實現數據傳輸,最后完成數模轉換產生視頻信號這一過程,分析指出該方案在實現高分辨率時的速度和容量瓶頸。 針對具體的設計要求,圍繞速度和容量問題,本文著眼于高分辨率SAR模擬器的FPGA實現研究,指出FPGA實時生成點目標原始回波數據是其實現的核心;針對這一核心問題,充分利用現代VLSI設計中的流水線技術與并行陣列技術以及FPGA的優良性能和豐富資源,在時間上采用同步流水結構、空間上采用并行陣列形式,將速度和容量問題統一為數據的高速生成問題;給出了系統總體設計思想,該方案不需要大容量存儲器單元,大大減少模擬器復雜度;對原始回波數據實時生成模塊的各主要單元給出了結構并進行了仿真,結果表明FPGA可以滿足課題設計要求;同時,對該模擬器片上系統的實現、增強人機交互性,給出了人機界面的設計思路。 分析指出了點目標原始回波數據實時生成模塊通過并行擴展即可實現多點目標的原始回波數據實時生成;最后對復雜場景目標模擬器的實現進行了構思,指出了傳統方案在改進的基礎上實現高分辨率視頻模擬器的可行性。本文首次提出以FPGA實現高分辨率合成孔徑雷達原始回波數據實時生成的思想,為國內業界在此方向做了一些理論和實踐上的有益探索,對于國內高分辨率合成孔徑雷達的研制具有一定的實際意義。
上傳時間: 2013-04-24
上傳用戶:阿四AIR
溫度的測量在工業領域最為常見,隨著電子技術、計算機技術的飛速發展,對現場溫度的測量也由過去的模擬刻度溫度計、指針溫度計向數字顯示的智能溫度計發展,而且,對測量的精度要求也越來越高。目前,盡管市場上也有高精度的溫度測量儀,但一般價格都很昂貴。傳統的8位單片機已經越來越不能適應日漸復雜的應用需求。友好的交互界面、網絡互聯功能、智能化的軟件、高效的數據處理幾乎成了智能化系統的共同需求。隨著嵌入式系統的迅猛發展,這種應用系統正逐步取代傳統的以PC為中心的應用,成為未來智能化儀表中的主力軍。本文立足于設計一種通用性強的測溫系統,可以在軟硬件兩方面適應多種測溫元件,為系統日后升級帶來方便。 本論文以對通用Linux操作系統在32位ARM微處理器上進行移植并對其實時性進行了改造。研制了鉑熱電阻高精度溫度監測系統,闡述了其具體技術指標及相關實現方法。系統以S3C2410為硬件核心,開發了主板及數據采集調理電路。構建了以微處理器S3C2410、閃存FLASH、存儲器SRAM、A/D、鍵盤、顯示器為一體的溫度監測的硬件平臺。在此硬件平臺上嵌入RT—Linux嵌入式實時操作系統,構建系統的多任務管理,最終完成了本課題的設計開發。
上傳時間: 2013-06-07
上傳用戶:ghostparker
在信息化發展的當前,音視頻等多媒體作為信息的載體,在社會生活的各個領域,起著越來越重要的作用。數字視頻的海量性成為阻礙其應用的的瓶頸之一。在這種情況下,H.264作為新一代的視頻壓縮標準,以其高性能的壓縮效率,成為備受關注的焦點和研究問題。H.264通過運動估計/運動補償(MP/MC)消除視頻時間冗余,對差值圖像進行離散余弦變換(DCT)消除空間冗余,對量化后的系數進行可變長編碼(VLC)消除統計冗余,獲得了極高的壓縮效率。隨著嵌入式處理器性能的逐漸提升和3G網絡即將商用的推動,H.264以其優秀的壓縮性能,無論是無線信道傳輸方面,還是存儲容量有限的嵌入式設備都具有廣闊的應用前景。 但H.264在提升壓縮性能的同時付出的代價是算法復雜度的成倍增加,實際應用中人們對視頻解碼的實時性要求嚴格,已出現的對應算法代碼多基于PC通用處理器實現,而嵌入式設備的主頻和處理能力仍然相對有限,存儲容量相對較小,總線速率相對偏低,因此必須對標準對應算法進行優化移植,才能滿足實際應用的需求。 本文在對H.264標準及其新特性進行詳細介紹后,重點研究了在解碼端如何針對解碼耗時較多的模塊進行改進,然后將算法移植到ARM平臺,并針對平臺特點作出相應優化,最后完成解碼圖象顯示,并給出了測試結果。本文主要完成的工作如下: 詳細分析了H.264的參考軟件JM中解碼流程,并利用測試工具分析了各模塊耗時,針對耗時較多的模塊如插值運算及去塊濾波模塊,提出了對應的改進算法并在H.264的參考軟件JM86上進行了實現,PC測試實驗證明了算法改進的優越性和運算優化的可行性。最后針對ARM平臺,在對程序結構和對應代碼進行優化之后,將其移植到WINCE系統之下,同時給出了WINCE平臺解碼后圖象加速顯示方法,并對最終測試結果與性能做出了評價。
上傳時間: 2013-06-04
上傳用戶:shijiang
隨著現代信息系統發展,網絡系統尤其是分布式系統日益廣泛地用于各個行業和領域,其中很多的關鍵應用需要基于時間同步進行。傳統采用精準時鐘對設備物理時鐘進行精準調節以達到時鐘同步的方式,以及單純的在局域網內部通過相關時間協議進行時間同步的方式,由于受諸多限制,不能很好地解決分布式精確時鐘同步的問題。然而人們對分布式時間精準度和時間同步的精確度要求越來越高,新型分布式網絡時間同步研究成為一個需要亟待解決的關鍵性問題。既有工程應用價值,也有一定的理論意義。 首先從分布式系統應用的角度出發,首先對GNSS衛星授時、NTP協議、嵌入式系統及uClinux操作系統等理論和技術進行了闡述。重點討論了如何解決分布式系統中的精確授時與同步問題的必要性和工程意義,分析了GNSS衛星授時特點和NTP網絡協議的機制。 其次在充分考慮到網絡同步實時性要求高的特點的基礎上,提出了一種基于GNSS的嵌入式NTP授時服務器的設計架構,對各主要模塊的功能、結構和工作原理進行了功能和性能分析。硬件具體以32位ARMS3C44B0X作為硬件控制核心的微處理器,開發了具有多通信端口的應用電路主板,并集成了GNSS衛星通信模塊。 再次在軟件方面具體對uClinux操作系統底層接口進行了較為深入的分析,在所設計的服務器硬件平臺上移植了uClinux嵌入式操作系統及相關的驅動程序,并采用模塊化的設計思想進行了NTP應用程序的設計與集成,實現了NTP協議的編譯和NTP授時服務,其中對NTP協議主要參數和具體工作過程進行了系統性分析和設置應用。 最后在獲取精準的系統統一時鐘、通過NTP協議提供授時服務的基礎上,結合實際在人工影響天氣通信指揮系統中具體應用,實現了分布式人工降雨火箭彈發射點按命令精確同步進行發射的應用集成。初步測試表明,本文所設計的授時服務器應用情況良好,實現了不同層次分布式應用對于時間精準同步的高要求。
上傳時間: 2013-04-24
上傳用戶:ouyangtongze
隨著生物工程及醫學影像學的發展,磁共振成像在醫學診斷學方面發揮著越來越重要的角色。磁場的均勻性是大型醫療設備——核磁共振(MRI)成像的理論基礎,是評價該設備的一個重要的技術參數,磁場的均勻性分析也是電磁場理論分析的一個重要方向。良好、穩定的磁場均勻性對核磁共振圖像的信噪比(SNR)的提高有重要的意義,同時也是飽和壓脂序列實現的唯一條件。 該課題的主要內容是在介紹磁共振成像原理與磁共振超導磁體的超導勻場線圈的形狀及位置的基礎上,分析各個線圈中電流的大小與空間某點磁場強度的關系。同時借鑒磁共振成像原理,設計輔助測量水膜,對空間某一特定半徑的球體腔內各點的磁場強度進行自動化測量。在當前使用的被動式勻場的基礎上,利用分析軟件,對線圈的選擇及電流的大小進行計算與優化。實驗結果表明效果良好,磁場均勻度有很大的改善。 采用的主要方法是利用磁共振成像原理及傅里葉轉化技術去設計一種精確、方便、快捷的勻場方法。通過計算機模擬及有限元分析的方法進行計算、優化,最終得到理想的磁場均勻度。 良好的磁場均勻性是磁共振成像的基礎,是飽和壓脂序列(FATSAT)、平面回波成像(EPI)、彌散成像、頻譜分析等一系列近幾年新出現的先進序列實現的前提條件。從而為臨床醫學提供了一種先進的檢查手段,為疾病診治的及時性、準確性、可靠性及病灶確切位置的判斷都提供了基礎。 該文所介紹的磁場均勻性測量、分析方法以及在此基礎上設計的勻場計算分析軟件已在多臺磁共振安裝調試過程中得到應用,達到了預期的目的,能夠滿足現場調試的要求。該方法對于今后超導磁體磁共振的磁場均勻性調試,及在醫學影像學方面的發展有很好的應用價值。該項技術在該領域的推廣必然會提高磁場均勻性的精度,推動醫學影像學及臨床診斷學的發展。并能帶來良好的社會效益及經濟效益,具有關闊的應用前景。
上傳時間: 2013-04-24
上傳用戶:tianjinfan
儀器儀表產品的總體發展趨勢是傳統的儀器儀表將仍然朝著高性能、高精度、高靈敏、高穩定、高可靠、高環保和長壽命的“六高一長”的方向發展;新型的儀器儀表與元器件將朝著微型化、集成化、電子化、數字化、多功能化、智能化、網絡化、計算機化的方向發展;其中占主導地位、起核心或關鍵的作用是微型化、智能化和網絡化。而我國儀器儀表在工業自動化儀表方面重點發展基本上是基于現場總線技術的主控系統裝置及智能化儀表和專用自動化儀表;閘門測控儀表一般的功能都是控制閘門開度、荷重,以及超限報警等基本功能。處理器核心也一般都是8/16位的單片機,8/16位單片機功能簡單難以滿足嵌入式設備的網絡、圖像傳輸等要求,而且對人際交互功能的支持也相對較弱。 本文正是針對現有閘門測控儀存在的功能單一、網絡功能差、接口標準不統一、不具備監控功能等問題,開發設計高性能新型智能儀表。以設計出一種智能型閘門測控儀表為研究出發點,在分析國內主流儀表廠家的儀表操作方式和儀表功能的基礎上,合理地進行軟硬件設計,為在同一硬件平臺下實現多種儀表的功能進行創新性和探索性研究。提出基于ARM的嵌入式閘門智能測控儀表的設計,構建基于ARM系統的硬件平臺和基于嵌入式Linux操作系統的軟件平臺。應用嵌入式系統技術設計開發全新的智能閘門測控儀主要功能包括:閘門開度和荷重自動檢測、實時性控制;過閘流量實時自動監測;閘門運行狀態診斷與故障報警;實時工況圖像處理;工業以太網現場總線接口與網絡傳輸等。
上傳時間: 2013-04-24
上傳用戶:lingduhanya