HCS08HCS12系列單片機 飛思卡爾公司的 HCS08/HCS12 系列 MCU,因其速度快、功能強、功耗小、價 格低等特點,在業界得到了廣泛的應用。 在 HCS08/HCS12 系列 MCU 中,飛思卡爾引入了新的片上調試技術——BDM。 這種調試技術由于其優越的性能而逐漸被業界接受,成為廣泛使用的MCU在線編程 調試方法。針對 BDM 技術,國外公司提供了功能強大的編程調試器,但價格高昂, 難以被國內廣大用戶接受;國內一些高校也進行了相關研究開發,但是研發的編程調 試器大多存在以下三個問題:一是隨著飛思卡爾MCU總線頻率的不斷提高,這些編 程調試器已經不能適應與高頻率MCU的通信的要求;二是無法與飛思卡爾的集成開 發環境 CodeWarrior 兼容,使用很不方便;三是由于采用 USB1.1 協議,導致整體通 信速度很慢。 本文對國內外已有的HCS08/HCS12 編程調試器進行了深入的技術分析,綜合目 前微控制器的最新發展技術,提出了采用USB2.0 通信接口的編程調試器硬件及底層 驅動的設計方案,實現了一種新型高效的適用于飛思卡爾 HCS08/HCS12 系列 MCU 的 USBDM(Universal BDM,通用 BDM編程調試器),有效地解決了國內編程調試 器普遍存在的頻率瓶頸及通信速度。同時,本文在研究CodeWarrior的通信接口規范 的基礎上,剖析了CodeWarrior中通信接口函數的功能,實現了作者編程調試器體系 中的通信函數,使之適用于 CodeWarrior 開發環境。USBDM 編程調試器通信函數動 態鏈接庫的設計,不僅便于使用編程調試器進行二次開發,也方便了驅動程序的更新。
上傳時間: 2013-10-28
上傳用戶:youke111
問題的提出我公司有多臺不同廠家生產的水泥包裝機,有電子秤控制和機械秤控制2種方式。在生產使用過程中,機械秤原理的先天不足,直接影響稱重的準確性。一是秤杠桿支點(俗稱秤刀子)會磨損,影響杠桿的靈活性;二是用于探測杠桿動作的接近開關,隨使用次數增多,電參數會發生變化,且接近開關的壽命總是有限的;三是由于接近開關的動作距離,總是存在個體的不同,每次更換時,調準袋重總是一件麻煩事。對于電子秤:1)有的秤沒有很好解決抗干擾問題,會出現電子秤死機現象,需人工復位;2)有的秤沒有很好解決每袋都能自動清零問題,皮重會出現隨時間積累,直接影響袋重,需每隔一定時間人工重新整定。正是基于以上秤存在稱重不穩、故障多等缺點,我們提出在原有機械包裝機的基礎上,以AT89C52單片機為核心的電子秤控制方案。
上傳時間: 2013-10-27
上傳用戶:windwolf2000
摘要:反應堆儀表和控制系統(I&C)的數字化發展方向成為趨勢,反應堆堆外核測量系統的數字化勢在必行。傳統脈沖周期監測裝置通常采用模擬電路設計,但是,周期測量穩定性較差,統計漲落帶來的測量誤差較大。本項目研制數字脈沖周期監測裝置能克服以上缺陷。本文簡單介紹了單片機在數字脈沖周期監測裝置中的應用,并簡要分析了使用80C196KC單片機的原因和在脈沖周期監測裝置中單片機完成的功能和功能實現方法。關鍵詞:脈沖周期監測;80C196KC;C語言;最小二乘擬合法
上傳時間: 2013-11-10
上傳用戶:saharawalker
SPCE061A的指令周期表 SPCE061A的指令周期表[注意]:表中目標寄存器為PC時,部分指令周期會發生改變;建議在非必要的情況下,盡量不用PC作為目標寄存器。[符號約定]:表中符號代表的含義如下:R1,R2,R3,R4: 通用寄存器;BP(R5): 基址指針寄存器,也可以作為通用寄存器使用;SR: 段寄存器;SP: 堆棧指針寄存器;PC: 程序計數器;N: 負標志;Z: 零標志;S: 符號標志;C: 進位標志;IM6: 6位立即數尋址;IM16: 16位立即數尋址;[A6]: 存儲器絕對尋址,用6位立即數表示地址;[A16]: 存儲器絕對尋址,用16位立即數表示地址;R: 寄存器尋址;[R]: 寄存器間接尋址;[BP+IM6]: 變址尋址,地址偏移量為6位立即數;[BP+IM16]: 變址尋址,地址偏移量為16位立即數;{}: 可選項;D: 數據段基址,D:或省略都表示基址為0(在第0頁);#: 算術邏輯運算符(不能為乘除);n 移位操作時的移位位數。
上傳時間: 2013-10-23
上傳用戶:nanshan
入口條件:被除數在R2、R3、R4、R5中,除數在R6、R7中。出口信息:OV=0時商在R2、R3中,OV=1時溢出。影響資源:PSW、A、B、R1~R7 堆棧需求: 5字節DIVS: LCALL MDS ;計算結果的符號和兩個操作數的絕對值PUSH PSW ;保存結果的符號LCALL DIVD ;計算兩個絕對值的商JNB OV,DVS1 ;溢出否?POP ACC ;溢出,放去結果的符號,保留溢出標志
上傳時間: 2013-11-09
上傳用戶:lht618
51單片機實訓指南:一、 實習課題基于單片機最小系統的頻率計設計二、 實習內容單片機最小系統電路原理設計分析與講解,PCB設計分析與講解,電路板焊接培訓與實際操作,程序設計、調試分析與講解,程序調試實際操作。三、硬件資源※ 89S51單片機;※ 6位共陽極數碼管;※ 段碼驅動器74HC573,位選譯碼器74HC138;※ 4路獨立式按鍵;※ 外部晶振電路;※ ISP下載接口(In system program,在系統編程);※ DC+5V電源試配器(選配);※ ISP下載線(選配);※ 單片機實訓模塊(頻率計分頻預處理電路)。四、電路原理分析與設計P1為外部電源輸入座(DC+5V),S8為電源最小系統的電源開關,E1和C3為電源濾波,去耦電容。D1為系統電源指示燈。J2為ISP下載接口,S7系統復位按鍵。CRY1,C1,C2為外部時針電路。IC1為89S51(DIP-40),左上角為第一腳。PRE1,PRE2。為上拉排阻(阻值4.7k—10k)。J5,J9,J6,J10分別對應單片機的P0,P1,P2,P3口。便于二次開發。6路共陽極數碼管動態顯示電路,P0口通過74HC573(起驅動和隔離作用,讓電流通過74CH573流入公共地),來控制數碼管的8路段碼,P20-P22通過74HC138譯碼器(使用其中的6路)控制數碼管的公共端(中間還有三極管做驅動器)。這樣設計的理由:為了保證該單片機最小系統的二次開發的資源充足和合理性。
標簽: 51單片機
上傳時間: 2013-10-14
上傳用戶:ryb
1、程序的基本格式先介紹二條偽指令:EQU ——標號賦值偽指令ORG ——地址定義偽指令PIC16C5X在RESET后指令計算器PC被置為全“1”,所以PIC16C5X幾種型號芯片的復位地址為:PIC16C54/55:1FFHPIC16C56:3FFHPIC16C57/58:7FFH一般來說,PIC的源程序并沒有要求統一的格式,大家可以根據自己的風格來編寫。但這里我們推薦一種清晰明了的格式TITLE This is ⋯⋯ ;程序標題;--------------------------------------;名稱定義和變量定義;--------------------------------------F0 EQU 0RTCC EQU 1PC EQU 2STATUS EQU 3FSR EQU 4RA EQU 5RB EQU 6RC EQU 7┋PIC16C54 EQU 1FFH ;芯片復位地址PIC16C56 EQU 3FFHPIC16C57 EQU 7FFH;-----------------------------------------ORG PIC16C54 GOTO MAIN ;在復位地址處轉入主程序ORG 0 ;在0000H開始存放程序;-----------------------------------------;子程序區;-----------------------------------------DELAY MOVLW 255┋RETLW 0;------------------------------------------;主程序區;------------------------------------------MAINMOVLW B‘00000000’TRIS RB ;RB已由偽指令定義為6,即B口┋LOOPBSF RB,7 CALL DELAYBCF RB,7 CALL DELAY┋GOTO LOOP;-------------------------------------------END ;程序結束注:MAIN標號一定要處在0頁面內。2、程序設計基礎
上傳時間: 2013-11-14
上傳用戶:cjf0304
LTC1732 是LINEAR TECHNOLOGY 公司推出的鋰離子電池充電控制集成電路芯片。它具有電池插入檢測和自動低壓電池充電功能。文章介紹了該芯片的結構、特點、工作原理及應用信息,給出了典型的應用電路。 LTC1732 是LINEAR TECHNOLOGY 公司生產的鋰-離子(Li-離子)電池恒流/恒壓線性充電控制器。它也可以對鎳-鎘(NiCd)和鎳-氫(NiMH)電池恒流充電。其充電電流可通過外部傳感電阻器編程到7%(最大值)的精度。最終的浮動電壓精度為1%。利用LTC1732 的SEL 端可為4.1V 或4.2V 電池充電。當輸入電源撤消后,LTC1732 可自動進入低電流睡眠狀態,以使消耗電流下降到7μA。LTC1732 的內部比較器用于檢測充電結束條件(C/10),而總的充電時間則是通過可編程計時器的外部電容來設置的。在電池完全放電后,控制器將自動以規定電流的10%對被充電電池進行慢速充電直到電池電壓超過2.457V。當放電后的電池插入充電器或當輸入電源接通時,LTC1732 將開始重新充電。另外,如果電池一直插入在充電器且在電池電壓降到3.8V(LTC1732-4)或4.05V(LTC1732-4.2)以下時,充電器也將開始重新充電。LTC1732 的其它主特點如下:●具有1%的預置充電電壓精度;●輸入電壓范圍4.5V~12V;●充電電流可編程控制;●具有C/10 充電電流檢測輸出;●可編程控制充電終端計時;●帶有低電壓電池自動小電流充電模式;●可編程控制恒定電流接通模式;●具有電池插入檢測和自動低壓電流充電功能;●帶有輸入電源(隔離適配器)檢測輸出;●LTC1732-4.2 型器件的再充電閾值電壓為4.05V;●LTC1732-4 型器件的再充電閾值電壓為3.8V。
上傳時間: 2013-11-12
上傳用戶:semi1981
pic單片機實用教程(提高篇)以介紹PIC16F87X型號單片機為主,并適當兼顧PIC全系列,共分9章,內容包括:存儲器;I/O端口的復位功能;定時器/計數器TMR1;定時器TMR2;輸入捕捉/輸出比較/脈寬調制CCP;模/數轉換器ADC;通用同步/異步收發器USART;主控同步串行端口MSSP:SPI模式和I2C模式。突出特點:通俗易懂、可讀性強、系統全面、學練結合、學用并重、實例豐富、習題齊全。<br>本書作為Microchip公司大學計劃選擇用書,可廣泛適用于初步具備電子技術基礎和計算機知識基礎的學生、教師、單片機愛好者、電子制作愛好者、電器維修人員、電子產品開發設計者、工程技術人員閱讀。本教程全書共分2篇,即基礎篇和提高篇,分2冊出版,以適應不同課時和不同專業的需要,也為教師和讀者增加了一種可選方案。 第1章 EEPROM數據存儲器和FIASH程序存儲器1.1 背景知識1.1.1 通用型半導體存儲器的種類和特點1.1.2 PIC單片機內部的程序存儲器1.1.3 PIC單片機內部的EEPROM數據存儲器1.1.4 PIC16F87X內部EEPROM和FIASH操作方法1.2 與EEPROM相關的寄存器1.3 片內EEPROM數據存儲器結構和操作原理1.3.1 從EEPROM中讀取數據1.3.2 向EEPROM中燒寫數據1.4 與FLASH相關的寄存器1.5 片內FLASH程序存儲器結構和操作原理1.5.1 讀取FLASH程序存儲器1.5.2 燒寫FLASH程序存儲器1.6 寫操作的安全保障措施1.6.1 寫入校驗方法1.6.2 預防意外寫操作的保障措施1.7 EEPROM和FLASH應用舉例1.7.1 EEPROM的應用1.7.2 FIASH的應用思考題與練習題第2章 輸入/輸出端口的復合功能2.1 RA端口2.1.1 與RA端口相關的寄存器2.1.2 電路結構和工作原理2.1.3 編程方法2.2 RB端口2.2.1 與RB端口相關的寄存器2.2.2 電路結構和工作原理2.2.3 編程方法2.3 RC端口2.3.1 與RC端口相關的寄存器2.3.2 電路結構和工作原理2.3.3 編程方法2.4 RD端口2.4.1 與RD端口相關的寄存器2.4.2 電路結構和工作原理2.4.3 編程方法2.5 RE端口2.5.1 與RE端口相關的寄存器2.5.2 電路結構和工作原理2.5.3 編程方法2.6 PSP并行從動端口2.6.1 與PSP端口相關的寄存器2.6.2 電路結構和工作原理2.7 應用舉例思考題與練習題第3章 定時器/計數器TMR13.1 定時器/計數器TMR1模塊的特性3.2 定時器/計數器TMR1模塊相關的寄存器3.3 定時器/計數器TMR1模塊的電路結構3.4 定時器/計數器TMR1模塊的工作原理3.4.1 禁止TMR1工作3.4.2 定時器工作方式3.4.3 計數器工作方式3.4.4 TMR1寄存器的賦值與復位3.5 定時器/計數器TMR1模塊的應用舉例思考題與練習題第4章 定時器TMR24.1 定時器TMR2模塊的特性4.2 定時器TMR2模塊相關的寄存器4.3 定時器TMR2模塊的電路結構4.4 定時器TMR2模塊的工作原理4.4.1 禁止TMR2工作4.4.2 定時器工作方式4.4.3 寄存器TMR2和PR2以及分頻器的復位4.4.4 TMR2模塊的初始化編程4.5 定時器TMR2模塊的應用舉例思考題與練習題第5章 輸入捕捉/輸出比較/脈寬調制CCP5.1 輸入捕捉工作模式5.1.1 輸入捕捉摸式相關的寄存器5.1.2 輸入捕捉模式的電路結構5.1.3 輸入捕捉摸式的工作原理5.1.4 輸入捕捉摸式的應用舉例5.2 輸出比較工作模式5.2.1 輸出比較模式相關的寄存器5.2.2 輸出比較模式的電路結構5.2.3 輸出比較模式的工作原理5.2.4 輸出比較模式的應用舉例5.3 脈寬調制輸出工作模式5.3.1 脈寬調制模式相關的寄存器5.3.2 脈寬調制模式的電路結構5.3.3 脈寬調制模式的工作原理5.3.4 脈定調制模式的應用舉例5.4 兩個CCP模塊之間相互關系思考題與練習題第6章 模/數轉換器ADC6.1 背景知識6.1.1 ADC種類與特點6.1.2 ADC器件的工作原理6.2 PIC16F87X片內ADC模塊6.2.1 ADC模塊相關的寄存器6.2.2 ADC模塊結構和操作原理6.2.3 ADC模塊操作時間要求6.2.4 特殊情況下的A/D轉換6.2.5 ADC模塊的轉換精度和分辨率6.2.6 ADC模塊的內部動作流程和傳遞函數6.2.7 ADC模塊的操作編程6.3 PIC16F87X片內ADC模塊的應用舉例思考題與練習題第7章 通用同步/異步收發器USART7.1 串行通信的基本概念7.1.1 串行通信的兩種基本方式7.1.2 串行通信中數據傳送方向7.1.3 串行通信中的控制方式7.1.4 串行通信中的碼型、編碼方式和幀結構7.1.5 串行通信中的檢錯和糾錯方式7.1.6 串行通信組網方式7.1.7 串行通信接口電路和參數7.1.8 串行通信的傳輸速率7.2 PIC16F87X片內通用同步/異步收發器USART模塊7.2.1 與USART模塊相關的寄存器7.2.2 USART波特率發生器BRG7.2.3 USART模塊的異步工作方式7.2.4 USART模塊的同步主控工作方式7.2.5 USART模塊的同步從動工作方式7.3 通用同步/異步收發器USART的應用舉例思考題與練習題第8章 主控同步串行端口MSSP——SPI模式8.1 SPI接口的背景知識8.1.1 SPI接口信號描述8.1.2 基于SPI的系統構成方式8.1.3 SPI接口工作原理8.1.4 兼容的MicroWire接口8.2 PIC16F87X的SPI接口8.2.1 SPI接口相關的寄存器8.2.2 SPI接口的結構和操作原理8.2.3 SPI接口的主控方式8.2.4 SPI接口的從動方式8.3 SPI接口的應用舉例思考題與練習題第9章 主控同步串行端口MSSP——I(平方)C模式9.1 I(平方)C總線的背景知識9.1.1 名詞術語9.1.2 I(平方)C總線的技術特點9.1.3 I(平方)C總線的基本工作原理9.1.4 I(平方)C總線信號時序分析9.1.5 信號傳送格式9.1.6 尋址約定9.1.7 技術參數9.1.8 I(平方)C器件與I(平方)C總線的接線方式9.1.9 相兼容的SMBus總線9.2 與I(平方)C總線相關的寄存器9.3 典型信號時序的產生方法9.3.1 波特率發生器9.3.2 啟動信號9.3.3 重啟動信號9.3.4 應答信號9.3.5 停止信號9.4 被控器通信方式9.4.1 硬件結構9.4.2 被主控器尋址9.4.3 被控器接收——被控接收器9.4.4 被控器發送——被控發送器9.4.5 廣播式尋址9.5 主控器通信方式9.5.1 硬件結構9.5.2 主控器發送——主控發送器9.5.3 主控器接收——主控接收器9.6 多主通信方式下的總線沖突和總線仲裁9.6.1 發送和應答過程中的總線沖突9.6.2 啟動過程中的總線沖突9.6.3 重啟動過程中的總線沖突9.6.4 停止過程中的總線沖突9.7 I(平方)C總線的應用舉例思考題與練習題附錄A 包含文件P16F877.INC附錄B 新版宏匯編器MPASM偽指令總表參考文獻
上傳時間: 2013-12-14
上傳用戶:xiaoyuer
80C51單片機由于功能全面、開發工具較為完善、衍生產品豐富、大量的設計資源可以繼承和共享,得到廣泛的應用。我們設計的一款手持線PDA產品,也選擇80C51單片機作為主、輔CPU,還具備點陣液晶顯示屏、導電橡膠鍵盤、雙IC卡接口、EEPROM存儲器、實時時鐘和串行通信口。由于使用80C51單片機開發,高級語言編程,大大降低了設計的技術風險,產品在較短的時間內就推向了市場。但是,同一些低速的微控制器(如4位單片機)和高速的RISC處理器相比,80C51單片機在功耗上沒有優勢。為了在PDA類產品中發揮80C51單片機的上述特長,我們通過采取軟、硬件配合的一系列措施,加強低電壓、低功耗設計,取得了良好的效果。該機使用一顆3V鈕扣式鋰電池,開機時工作電池小于4mA,瞬間最大工作電流小于20mA,瞬間最大工作電流小于20mA,關機電流小于2μA。一顆電池可以使用較長的時間,達到滿意的設計指標。一、低電壓低功耗設計理論在一個器件中,功耗通常用電流消耗來表示。下式表明消耗的電池與器件特性之間的關系:Icc = C ∫ Vda ≈ ΔV · C · f (1)式中:Icc是器件消耗的電流;Δ是電壓變化的幅值;C是器件電容和輸出容性負載的大小;f是器件運行頻率。從公式(1)可以得到降低系統功耗的理論依據。將器件供電電壓從5V降低3V,可以至少降低40%的功耗。降低器件的工作頻率,也能成比例地降低功耗。
上傳時間: 2013-10-13
上傳用戶:shaojie2080