Java: 在n 張撲克牌中找出順子 題目是這樣的:有n張撲克牌,每張牌的取值范圍是:2,3,4,5,6,7,8,9,10,J,Q,K,A。在這n張牌中找出順子(5張及5張以上的連續(xù)的牌),并將這些順子打印出來。 思路:我的思路其實很簡單,首先就是要去掉重復的牌,因為同樣的順子之算一個,顯然JAVA中的Set很適合這個工作。同時又需要對這些牌進行排序,毫無疑問就是TreeSet了。然后從小到大遍歷這些牌,并設置一個計數器count。若發(fā)現(xiàn)連續(xù)的牌,則count++;若發(fā)現(xiàn)不連續(xù)的,分2中情況:若count>4,則找到了一個順子,存起來;反之則什么都不做。然后count=1,從新開始找順子。下面就是代碼:
標簽: Java
上傳時間: 2013-12-22
上傳用戶:hewenzhi
printf(" 請輸入%d個課程的代表值(<%d個字符):\n" ,(*G).vexnum,MAX_NAME) for(i=0 i<(*G).vexnum ++i) /* 構造頂點向量 */ { scanf(" %s" ,(*G).vertices[i].data) (*G).vertices[i].firstarc=NULL } printf(" 請輸入%d個課程的學分值(<%d個字符):\n" ,(*G).vexnum,MAX_NAME) for(i=0 i<(*G).vexnum ++i) /* 構造頂點向量 */ {scanf(" %s" ,(*G).verticestwo[i].data) } printf(&quo
標簽: vexnum quot MAX_NAME printf
上傳時間: 2016-08-15
上傳用戶:Avoid98
a d
標簽:
上傳時間: 2017-03-22
上傳用戶:jcljkh
I was trying to develope a programme to make a slide show of all the pictures of a folder using vb.net. I have spent lot of time in net for searching this but all in vain, I didn t get a simple programme to solve the same and lastly I gave myself a try for the same and developed the code, I have used there a folderbrowserdialogue and a timer with a picture box control and in coding I have used IO name spaces to get the pathe and folder info here is the code. Enjoy Subhankar
標簽: programme develope pictures trying
上傳時間: 2017-04-24
上傳用戶:a3318966
The code performs a number (ITERS) of iterations of the Bailey s 6-step FFT algorithm (following the ideas in the CMU Task parallel suite). 1.- Generates an input signal vector (dgen) with size n=n1xn2 stored in row major order In this code the size of the input signal is NN=NxN (n=NN, n1=n2=N) 2.- Transpose (tpose) A to have it stored in column major order 3.- Perform independent FFTs on the rows (cffts) 4.- Scale each element of the resulting array by a factor of w[n]**(p*q) 5.- Transpose (tpose) to prepair it for the next step 6.- Perform independent FFTs on the rows (cffts) 7.- Transpose the resulting matrix The code requires nested Parallelism.
標簽: iterations performs Bailey number
上傳時間: 2014-01-05
上傳用戶:libenshu01
Computes all eigenvalues and eigenvectors of a real symmetric matrix a, ! which is of size n by n, stored in a physical np by np array. ! On output, elements of a above the diagonal are destroyed. ! d returns the eigenvalues of a in its first n elements. ! v is a matrix with the same logical and physical dimensions as a, ! whose columns contain, on output, the normalized eigenvectors of a. ! nrot returns the number of Jacobi rotations that were required. ! Please notice that the eigenvalues are not ordered on output. ! If the sorting is desired, the addintioal routine "eigsrt" ! can be invoked to reorder the output of jacobi.
上傳時間: 2016-06-04
上傳用戶:1512313
1.Describe a Θ(n lg n)-time algorithm that, given a set S of n integers and another integer x, determines whether or not there exist two elements in S whose sum is exactly x. (Implement exercise 2.3-7.) #include<stdio.h> #include<stdlib.h> void merge(int arr[],int low,int mid,int high){ int i,k; int *tmp=(int*)malloc((high-low+1)*sizeof(int)); int left_low=low; int left_high=mid; int right_low=mid+1; int right_high=high; for(k=0;left_low<=left_high&&right_low<=right_high;k++) { if(arr[left_low]<=arr[right_low]){ tmp[k]=arr[left_low++]; } else{ tmp[k]=arr[right_low++]; } } if(left_low<=left_high){ for(i=left_low;i<=left_high;i++){ tmp[k++]=arr[i]; } } if(right_low<=right_high){ for(i=right_low;i<=right_high;i++) tmp[k++]=arr[i]; } for(i=0;i<high-low+1;i++) arr[low+i]=tmp[i]; } void merge_sort(int a[],int p,int r){ int q; if(p<r){ q=(p+r)/2; merge_sort(a,p,q); merge_sort(a,q+1,r); merge(a,p,q,r); } } int main(){ int a[8]={3,5,8,6,4,1,1}; int i,j; int x=10; merge_sort(a,0,6); printf("after Merging-Sort:\n"); for(i=0;i<7;i++){ printf("%d",a[i]); } printf("\n"); i=0;j=6; do{ if(a[i]+a[j]==x){ printf("exist"); break; } if(a[i]+a[j]>x) j--; if(a[i]+a[j]<x) i++; }while(i<=j); if(i>j) printf("not exist"); system("pause"); return 0; }
上傳時間: 2017-04-01
上傳用戶:糖兒水嘻嘻
#include<stdio.h> #define TREEMAX 100 typedef struct BT { char data; BT *lchild; BT *rchild; }BT; BT *CreateTree(); void Preorder(BT *T); void Postorder(BT *T); void Inorder(BT *T); void Leafnum(BT *T); void Nodenum(BT *T); int TreeDepth(BT *T); int count=0; void main() { BT *T=NULL; char ch1,ch2,a; ch1='y'; while(ch1=='y'||ch1=='y') { printf("\n"); printf("\n\t\t 二叉樹子系統(tǒng)"); printf("\n\t\t*****************************************"); printf("\n\t\t 1---------建二叉樹 "); printf("\n\t\t 2---------先序遍歷 "); printf("\n\t\t 3---------中序遍歷 "); printf("\n\t\t 4---------后序遍歷 "); printf("\n\t\t 5---------求葉子數 "); printf("\n\t\t 6---------求結點數 "); printf("\n\t\t 7---------求樹深度 "); printf("\n\t\t 0---------返 回 "); printf("\n\t\t*****************************************"); printf("\n\t\t 請選擇菜單號 (0--7)"); scanf("%c",&ch2); getchar(); printf("\n"); switch(ch2) { case'1': printf("\n\t\t請按先序序列輸入二叉樹的結點:\n"); printf("\n\t\t說明:輸入結點(‘0’代表后繼結點為空)后按回車。\n"); printf("\n\t\t請輸入根結點:"); T=CreateTree(); printf("\n\t\t二叉樹成功建立!\n");break; case'2': printf("\n\t\t該二叉樹的先序遍歷序列為:"); Preorder(T);break; case'3': printf("\n\t\t該二叉樹的中序遍歷序列為:"); Inorder(T);break; case'4': printf("\n\t\t該二叉樹的后序遍歷序列為:"); Postorder(T);break; case'5': count=0;Leafnum(T); printf("\n\t\t該二叉樹有%d個葉子。\n",count);break; case'6': count=0;Nodenum(T); printf("\n\t\t該二叉樹總共有%d個結點。\n",count);break; case'7': printf("\n\t\t該樹的深度為:%d",TreeDepth(T)); break; case'0': ch1='n';break; default: printf("\n\t\t***請注意:輸入有誤!***"); } if(ch2!='0') { printf("\n\n\t\t按【Enter】鍵繼續(xù),按任意鍵返回主菜單!\n"); a=getchar(); if(a!='\xA') { getchar(); ch1='n'; } } } } BT *CreateTree() { BT *t; char x; scanf("%c",&x); getchar(); if(x=='0') t=NULL; else { t=new BT; t->data=x; printf("\n\t\t請輸入%c結點的左子結點:",t->data); t->lchild=CreateTree(); printf("\n\t\t請輸入%c結點的右子結點:",t->data); t->rchild=CreateTree(); } return t; } void Preorder(BT *T) { if(T) { printf("%3c",T->data); Preorder(T->lchild); Preorder(T->rchild); } } void Inorder(BT *T) { if(T) { Inorder(T->lchild); printf("%3c",T->data); Inorder(T->rchild); } } void Postorder(BT *T) { if(T) { Postorder(T->lchild); Postorder(T->rchild); printf("%3c",T->data); } } void Leafnum(BT *T) { if(T) { if(T->lchild==NULL&&T->rchild==NULL) count++; Leafnum(T->lchild); Leafnum(T->rchild); } } void Nodenum(BT *T) { if(T) { count++; Nodenum(T->lchild); Nodenum(T->rchild); } } int TreeDepth(BT *T) { int ldep,rdep; if(T==NULL) return 0; else { ldep=TreeDepth(T->lchild); rdep=TreeDepth(T->rchild); if(ldep>rdep) return ldep+1; else return rdep+1; } }
上傳時間: 2020-06-11
上傳用戶:ccccy
#include <stdio.h> #include <stdlib.h> #define SMAX 100 typedef struct SPNode { int i,j,v; }SPNode; struct sparmatrix { int rows,cols,terms; SPNode data [SMAX]; }; sparmatrix CreateSparmatrix() { sparmatrix A; printf("\n\t\t請輸入稀疏矩陣的行數,列數和非零元素個數(用逗號隔開):"); scanf("%d,%d,%d",&A.cols,&A.terms); for(int n=0;n<=A.terms-1;n++) { printf("\n\t\t輸入非零元素值(格式:行號,列號,值):"); scanf("%d,%d,%d",&A.data[n].i,&A.data[n].j,&A.data[n].v); } return A; } void ShowSparmatrix(sparmatrix A) { int k; printf("\n\t\t"); for(int x=0;x<=A.rows-1;x++) { for(int y=0;y<=A.cols-1;y++) { k=0; for(int n=0;n<=A.terms-1;n++) { if((A.data[n].i-1==x)&&(A.data[n].j-1==y)) { printf("%8d",A.data[n].v); k=1; } } if(k==0) printf("%8d",k); } printf("\n\t\t"); } } void sumsparmatrix(sparmatrix A) { SPNode *p; p=(SPNode*)malloc(sizeof(SPNode)); p->v=0; int k; k=0; printf("\n\t\t"); for(int x=0;x<=A.rows-1;x++) { for(int y=0;y<=A.cols-1;y++) { for(int n=0;n<=A.terms;n++) { if((A.data[n].i==x)&&(A.data[n].j==y)&&(x==y)) { p->v=p->v+A.data[n].v; k=1; } } } printf("\n\t\t"); } if(k==1) printf("\n\t\t對角線元素的和::%d\n",p->v); else printf("\n\t\t對角線元素的和為::0"); } int main() { int ch=1,choice; struct sparmatrix A; A.terms=0; while(ch) { printf("\n"); printf("\n\t\t 稀疏矩陣的三元組系統(tǒng) "); printf("\n\t\t*********************************"); printf("\n\t\t 1------------創(chuàng)建 "); printf("\n\t\t 2------------顯示 "); printf("\n\t\t 3------------求對角線元素和"); printf("\n\t\t 4------------返回 "); printf("\n\t\t*********************************"); printf("\n\t\t請選擇菜單號(0-3):"); scanf("%d",&choice); switch(choice) { case 1: A=CreateSparmatrix(); break; case 2: ShowSparmatrix(A); break; case 3: SumSparmatrix(A); break; default: system("cls"); printf("\n\t\t輸入錯誤!請重新輸入!\n"); break; } if (choice==1||choice==2||choice==3) { printf("\n\t\t"); system("pause"); system("cls"); } else system("cls"); } }
上傳時間: 2020-06-11
上傳用戶:ccccy
摘# 要:設計和制作了一款&& ?G(!& )*)液晶電視用4F9 背光源。模擬出4F9 的光學分布,以此為基礎模擬出4F9 陣列的光強和顏色分布,得到適合的背光源厚度尺寸。在實際制作中,采用高效的驅動電路對4F9 陣列進行驅動,利用鋁制散熱片為背光源提供必須的散熱。測試的結果,在整體背光源功耗為"$% M 時,中心亮度達到"D DE% ?6 N G!,均勻度為CO@ " P,色彩還原性達到=QR’ 標準"%! P,遠遠超過’’S4 背光源的A% P。
上傳時間: 2021-12-09
上傳用戶: