回溯(b a c k t r a c k i n g)是一種系統地搜索問題解答的方法。為了實現回溯,首先需要為問題定義一個解空間( solution space),這個空間必須至少包含問題的一個解(可能是最優的)。在迷宮老鼠問題中,我們可以定義一個包含從入口到出口的所有路徑的解空間;在具有n 個對象的0 / 1背包問題中(見1 . 4節和2 . 2節),解空間的一個合理選擇是2n 個長度為n 的0 / 1向量的集合,這個集合表示了將0或1分配給x的所有可能方法。當n= 3時,解空間為{ ( 0 , 0 , 0 ),( 0 , 1 , 0 ),( 0 , 0 , 1 ),( 1 , 0 , 0 ),( 0 , 1 , 1 ),( 1 , 0 , 1 ),( 1 , 1 , 0 ),( 1 , 1 , 1 ) }。
標簽:
搜索
上傳時間:
2014-01-17
上傳用戶:jhksyghr
考察例1 4 - 8中的1 4個點。A中的最近點對為(b,h),其距離約為0 . 3 1 6。B中最近點對為
(f, j),其距離為0 . 3,因此= 0 . 3。當考察
是否存在第三類點時,除d, g, i, l, m 以外
的點均被淘汰,因為它們距分割線x= 1的
距離≥ 。RA ={d, i, m},RB= {g, l},由
于d 和m 的比較區中沒有點,只需考察i
即可。i 的比較區中僅含點l。計算i 和l
的距離,發現它小于,因此(i, l) 是最近
標簽:
上傳時間:
2013-12-03
上傳用戶:66666