C++完美演繹 經(jīng)典算法 如 /* 頭文件:my_Include.h */ #include <stdio.h> /* 展開(kāi)C語(yǔ)言的內(nèi)建函數(shù)指令 */ #define PI 3.1415926 /* 宏常量,在稍后章節(jié)再詳解 */ #define circle(radius) (PI*radius*radius) /* 宏函數(shù),圓的面積 */ /* 將比較數(shù)值大小的函數(shù)寫(xiě)在自編include文件內(nèi) */ int show_big_or_small (int a,int b,int c) { int tmp if (a>b) { tmp = a a = b b = tmp } if (b>c) { tmp = b b = c c = tmp } if (a>b) { tmp = a a = b b = tmp } printf("由小至大排序之后的結(jié)果:%d %d %d\n", a, b, c) } 程序執(zhí)行結(jié)果: 由小至大排序之后的結(jié)果:1 2 3 可將內(nèi)建函數(shù)的include文件展開(kāi)在自編的include文件中 圓圈的面積是=201.0619264
標(biāo)簽: my_Include include define 3.141
上傳時(shí)間: 2014-01-17
上傳用戶:epson850
數(shù)字運(yùn)算,判斷一個(gè)數(shù)是否接近素?cái)?shù) A Niven number is a number such that the sum of its digits divides itself. For example, 111 is a Niven number because the sum of its digits is 3, which divides 111. We can also specify a number in another base b, and a number in base b is a Niven number if the sum of its digits divides its value. Given b (2 <= b <= 10) and a number in base b, determine whether it is a Niven number or not. Input Each line of input contains the base b, followed by a string of digits representing a positive integer in that base. There are no leading zeroes. The input is terminated by a line consisting of 0 alone. Output For each case, print "yes" on a line if the given number is a Niven number, and "no" otherwise. Sample Input 10 111 2 110 10 123 6 1000 8 2314 0 Sample Output yes yes no yes no
上傳時(shí)間: 2015-05-21
上傳用戶:daguda
源代碼\用動(dòng)態(tài)規(guī)劃算法計(jì)算序列關(guān)系個(gè)數(shù) 用關(guān)系"<"和"="將3個(gè)數(shù)a,b,c依次序排列時(shí),有13種不同的序列關(guān)系: a=b=c,a=b<c,a<b=v,a<b<c,a<c<b a=c<b,b<a=c,b<a<c,b<c<a,b=c<a c<a=b,c<a<b,c<b<a 若要將n個(gè)數(shù)依序列,設(shè)計(jì)一個(gè)動(dòng)態(tài)規(guī)劃算法,計(jì)算出有多少種不同的序列關(guān)系, 要求算法只占用O(n),只耗時(shí)O(n*n).
標(biāo)簽: lt 源代碼 動(dòng)態(tài)規(guī)劃 序列
上傳時(shí)間: 2013-12-26
上傳用戶:siguazgb
c語(yǔ)言版的多項(xiàng)式曲線擬合。 用最小二乘法進(jìn)行曲線擬合. 用p-1 次多項(xiàng)式進(jìn)行擬合,p<= 10 x,y 的第0個(gè)域x[0],y[0],沒(méi)有用,有效數(shù)據(jù)從x[1],y[1] 開(kāi)始 nNodeNum,有效數(shù)據(jù)節(jié)點(diǎn)的個(gè)數(shù)。 b,為輸出的多項(xiàng)式系數(shù),b[i] 為b[i-1]次項(xiàng)。b[0],沒(méi)有用。 b,有10個(gè)元素ok。
標(biāo)簽: 多項(xiàng)式 曲線擬合 c語(yǔ)言 最小二乘法
上傳時(shí)間: 2014-01-12
上傳用戶:變形金剛
crc任意位生成多項(xiàng)式 任意位運(yùn)算 自適應(yīng)算法 循環(huán)冗余校驗(yàn)碼(CRC,Cyclic Redundancy Code)是采用多項(xiàng)式的 編碼方式,這種方法把要發(fā)送的數(shù)據(jù)看成是一個(gè)多項(xiàng)式的系數(shù) ,數(shù)據(jù)為bn-1bn-2…b1b0 (其中為0或1),則其對(duì)應(yīng)的多項(xiàng)式為: bn-1Xn-1+bn-2Xn-2+…+b1X+b0 例如:數(shù)據(jù)“10010101”可以寫(xiě)為多項(xiàng)式 X7+X4+X2+1。 循環(huán)冗余校驗(yàn)CRC 循環(huán)冗余校驗(yàn)方法的原理如下: (1) 設(shè)要發(fā)送的數(shù)據(jù)對(duì)應(yīng)的多項(xiàng)式為P(x)。 (2) 發(fā)送方和接收方約定一個(gè)生成多項(xiàng)式G(x),設(shè)該生成多項(xiàng)式 的最高次冪為r。 (3) 在數(shù)據(jù)塊的末尾添加r個(gè)0,則其相對(duì)應(yīng)的多項(xiàng)式為M(x)=XrP(x) 。(左移r位) (4) 用M(x)除以G(x),獲得商Q(x)和余式R(x),則 M(x)=Q(x) ×G(x)+R(x)。 (5) 令T(x)=M(x)+R(x),采用模2運(yùn)算,T(x)所對(duì)應(yīng)的數(shù)據(jù)是在原數(shù) 據(jù)塊的末尾加上余式所對(duì)應(yīng)的數(shù)據(jù)得到的。 (6) 發(fā)送T(x)所對(duì)應(yīng)的數(shù)據(jù)。 (7) 設(shè)接收端接收到的數(shù)據(jù)對(duì)應(yīng)的多項(xiàng)式為T(mén)’(x),將T’(x)除以G(x) ,若余式為0,則認(rèn)為沒(méi)有錯(cuò)誤,否則認(rèn)為有錯(cuò)。
標(biāo)簽: crc CRC 多項(xiàng)式 位運(yùn)算
上傳時(shí)間: 2014-11-28
上傳用戶:宋桃子
crc任意位生成多項(xiàng)式 任意位運(yùn)算 自適應(yīng)算法 循環(huán)冗余校驗(yàn)碼(CRC,Cyclic Redundancy Code)是采用多項(xiàng)式的 編碼方式,這種方法把要發(fā)送的數(shù)據(jù)看成是一個(gè)多項(xiàng)式的系數(shù) ,數(shù)據(jù)為bn-1bn-2…b1b0 (其中為0或1),則其對(duì)應(yīng)的多項(xiàng)式為: bn-1Xn-1+bn-2Xn-2+…+b1X+b0 例如:數(shù)據(jù)“10010101”可以寫(xiě)為多項(xiàng)式 X7+X4+X2+1。 循環(huán)冗余校驗(yàn)CRC 循環(huán)冗余校驗(yàn)方法的原理如下: (1) 設(shè)要發(fā)送的數(shù)據(jù)對(duì)應(yīng)的多項(xiàng)式為P(x)。 (2) 發(fā)送方和接收方約定一個(gè)生成多項(xiàng)式G(x),設(shè)該生成多項(xiàng)式 的最高次冪為r。 (3) 在數(shù)據(jù)塊的末尾添加r個(gè)0,則其相對(duì)應(yīng)的多項(xiàng)式為M(x)=XrP(x) 。(左移r位) (4) 用M(x)除以G(x),獲得商Q(x)和余式R(x),則 M(x)=Q(x) ×G(x)+R(x)。 (5) 令T(x)=M(x)+R(x),采用模2運(yùn)算,T(x)所對(duì)應(yīng)的數(shù)據(jù)是在原數(shù) 據(jù)塊的末尾加上余式所對(duì)應(yīng)的數(shù)據(jù)得到的。 (6) 發(fā)送T(x)所對(duì)應(yīng)的數(shù)據(jù)。 (7) 設(shè)接收端接收到的數(shù)據(jù)對(duì)應(yīng)的多項(xiàng)式為T(mén)’(x),將T’(x)除以G(x) ,若余式為0,則認(rèn)為沒(méi)有錯(cuò)誤,否則認(rèn)為有錯(cuò)
標(biāo)簽: crc CRC 多項(xiàng)式 位運(yùn)算
上傳時(shí)間: 2014-01-16
上傳用戶:hphh
We have a group of N items (represented by integers from 1 to N), and we know that there is some total order defined for these items. You may assume that no two elements will be equal (for all a, b: a<b or b<a). However, it is expensive to compare two items. Your task is to make a number of comparisons, and then output the sorted order. The cost of determining if a < b is given by the bth integer of element a of costs (space delimited), which is the same as the ath integer of element b. Naturally, you will be judged on the total cost of the comparisons you make before outputting the sorted order. If your order is incorrect, you will receive a 0. Otherwise, your score will be opt/cost, where opt is the best cost anyone has achieved and cost is the total cost of the comparisons you make (so your score for a test case will be between 0 and 1). Your score for the problem will simply be the sum of your scores for the individual test cases.
標(biāo)簽: represented integers group items
上傳時(shí)間: 2016-01-17
上傳用戶:jeffery
用游標(biāo)的方法實(shí)現(xiàn)對(duì)稱差的計(jì)算,即 (A-B)+(B-A)
上傳時(shí)間: 2016-05-23
上傳用戶:遠(yuǎn)遠(yuǎn)ssad
詞法分析器 對(duì)輸入一個(gè)函數(shù),并對(duì)其分析main() { int a,b a = 10 b = a + 20 }
上傳時(shí)間: 2013-12-20
上傳用戶:hfmm633
基因算法,用VC++或MATLAB,java等工具設(shè)計(jì)一程序計(jì)算任一個(gè)隨機(jī)產(chǎn)生的DNA基因表達(dá)式的有效長(zhǎng)度和值 設(shè)隨機(jī)產(chǎn)生的基因表達(dá)式為: + Q - / b * b a Q b a a b a a b b a a a b
上傳時(shí)間: 2014-01-09
上傳用戶:aa54
蟲(chóng)蟲(chóng)下載站版權(quán)所有 京ICP備2021023401號(hào)-1