The #1 Step-by-Step Guide to labviewNow Completely Updated for labview 8!
Master labview 8 with the industry's friendliest, most intuitive tutorial: labview for Everyone, Third Edition. Top labview experts Jeffrey Travis and Jim Kring teach labview the easy way: through carefully explained, step-by-step examples that give you reusable code for your own projects!
This brand-new Third Edition has been fully revamped and expanded to reflect new features and techniques introduced in labview 8. You'll find two new chapters, plus dozens of new topics, including Project Explorer, AutoTool, XML, event-driven programming, error handling, regular expressions, polymorphic VIs, timed structures, advanced reporting, and much more. Certified labview Developer (CLD) candidates will find callouts linking to key objectives on NI's newest exam, making this book a more valuable study tool than ever.
Not just what to d why to do it!
Use labview to build your own virtual workbench
Master labview's foundations: wiring, creating, editing, and debugging VIs; using controls and indicators; working with data structures; and much more
Learn the "art" and BEST practices of effective labview development
NEW: Streamline development with labview Express VIs
NEW: Acquire data with NI-DAQmx and the labview DAQmx VIs
NEW: Discover design patterns for error handling, control structures, state machines, queued messaging, and more
NEW: Create sophisticated user interfaces with tree and tab controls, drag and drop, subpanels, and more
Whatever your application, whatever your role, whether you've used labview or not, labview for Everyone, Third Edition is the fastest, easiest way to get the results you're after!
6小時學會labview,
labview Six Hour Course – Instructor Notes
This zip file contains material designed to give students a working knowledge of labview in a 6 hour timeframe. The contents are:
Instructor Notes.doc – this document.
labviewIntroduction-SixHour.ppt – a PowerPoint presentation containing screenshots and notes on the topics covered by the course.
Convert C to F (Ex1).vi – Exercise 1 solution VI.
Convert C to F (Ex2).vi – Exercise 2 solution subVI.
Thermometer-DAQ (Ex2).vi – Exercise 2 solution VI.
Temperature Monitor (Ex3).vi – Exercise 3 solution VI.
Thermometer (Ex4).vi – Exercise 4 solution subVI.
Convert C to F (Ex4).vi – Exercise 4 solution subVI.
Temperature Logger (Ex4).vi – Exercise 4 solution VI.
Multiplot Graph (Ex5).vi – Exercise 5 solution VI.
Square Root (Ex6).vi – Exercise 6 solution VI.
State Machine 1 (Ex7).vi – Exercise 7 solution VI.
The slides can be presented in two three hour labs, or six one hour lectures. Depending on the time and resources available in class, you can choose whether to assign the exercises as homework or to be done in class. If you decide to assign the exercises in class, it is BEST to assign them in order with the presentation. This way the students can create VI’s while the relevant information is still fresh. The notes associated with the exercise slide should be sufficient to guide the students to a solution. The solution files included are one possible solution, but by no means the only solution.
Abstract: This application note discusses a design for a phantom antenna power-supply system compatible with theDigital Satellite Equipment Control (DiSEqC) communication standard, using the MAX16948 automotive dual, highvoltageLDO/switch. The presented application circuit provides a remote antenna power supply and also enables onewaycommunication from the radio head unit to the remote antenna. This system architecture offers flexibility inDiSEqC tone-burst frequency choice (100Hz to 30kHz), enabling users the ability to select the BEST frequency for theirapplication.
Abstract: With industrial/scientific/medical (ISM) band radio frequency (RF) products, often times users are new to the structure of Maxim's low pin-count transmitters andfully integrated superheterodyne receivers. This tutorial provides simple steps that can be taken to get the BEST performance out of these transmitters and receivers whileproviding techniques to measure the overall capability of the design.
This introduction covers the fundamentals of VHDL as applied to Complex ProgrammableLogic Devices (CPLDs). Specifically included are those design practices that translate soundlyto CPLDs, permitting designers to use the BEST features of this powerful language to extractoptimum performance for CPLD designs.
本文簡單討論并總結了VHDL、Verilog,System verilog 這三中語言的各自特點和區別As the number of enhancements to variousHardware Description Languages (HDLs) hasincreased over the past year, so too has the complexityof determining which language is BEST fora particular design. Many designers and organizationsare contemplating whether they shouldswitch from one HDL to another.
Silicon Motion, Inc. has made BEST efforts to ensure that the information contained in this document is accurate andreliable. However, the information is subject to change without notice. No responsibility is assumed by SiliconMotion, Inc. for the use of this information, nor for infringements of patents or other rights of third parties.Copyright NoticeCopyright 2002, Silicon Motion, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,or transmitted in any form, without the prior written consent of Silicon Motion, Inc. Silicon Motion, Inc. reserves theright to make changes to the product specification without reservation and without notice to our users
CC386 is a general-purpose 32-bit C compiler. It is not an optimizing compiler but given that the code generation is fairly good. There are two versions one is for MSDOS/DPMI and one is for Win32. The Win32 version has a full-blown IDE capable of editing, building, and debugging windows programs included with it. However at this time debugging support for MSDOS is rudimentary at BEST and there is no IDE for DOS.
the newest version, support windows.
CBC下寫的串口編程,API函數實例
I wish this site had been around when I was trying to figure out how to make serial communications work in Windows95. I, like many programmers, was hit with the double-whammy of having to learn Windows programming and Win95 serial comm programming at the same time. I found both tasks confusing at BEST. It was particularly frustrating because I had, over the years, written so much stuff (including lots of serial comm software) for the DOS environment and numerous embedded applications. Interrupt driven serial comm, DMA transfer serial comm, TSR serial comm, C, assembler, various processors... you name it, it had written it. Yet, everything I knew seemed upside-down in the message-driven-callback world of Windows.