上下文無關文法(Context-Free Grammar, CFG)是一個4元組G=(V, T, S, P),其中,V和T是不相交的有限集,S∈V,P是一組有限的產生式規則集,形如A→α,其中A∈V,且α∈(V∪T)*。V的元素稱為非終結符,T的元素稱為終結符,S是一個特殊的非終結符,稱為文法開始符。 設G=(V, T, S, P)是一個CFG,則G產生的語言是所有可由G產生的字符串組成的集合,即L(G)={x∈T* | Sx}。一個語言L是上下文無關語言(Context-Free Language, CFL),當且僅當存在一個CFG G,使得L=L(G)。 *⇒ 例如,設文法G:S→AB A→aA|a B→bB|b 則L(G)={a^nb^m | n,m>=1} 其中非終結符都是大寫字母,開始符都是S,終結符都是小寫字母。
標簽: Context-Free Grammar CFG
上傳時間: 2013-12-10
上傳用戶:gaojiao1999
一:需求分析 1. 問題描述 魔王總是使用自己的一種非常精練而抽象的語言講話,沒人能聽懂,但他的語言是可逐步解釋成人能聽懂的語言,因為他的語言是由以下兩種形式的規則由人的語言逐步抽象上去的: ----------------------------------------------------------- (1) a---> (B1)(B2)....(Bm) (2)[(op1)(p2)...(pn)]---->[o(pn)][o(p(n-1))].....[o(p1)o] ----------------------------------------------------------- 在這兩種形式中,從左到右均表示解釋.試寫一個魔王語言的解釋系統,把 他的話解釋成人能聽得懂的話. 2. 基本要求: 用下述兩條具體規則和上述規則形式(2)實現.設大寫字母表示魔王語言的詞匯 小寫字母表示人的語言的詞匯 希臘字母表示可以用大寫字母或小寫字母代換的變量.魔王語言可含人的詞匯. (1) B --> tAdA (2) A --> sae 3. 測試數據: B(ehnxgz)B 解釋成 tsaedsaeezegexenehetsaedsae若將小寫字母與漢字建立下表所示的對應關系,則魔王說的話是:"天上一只鵝地上一只鵝鵝追鵝趕鵝下鵝蛋鵝恨鵝天上一只鵝地上一只鵝". | t | d | s | a | e | z | g | x | n | h | | 天 | 地 | 上 | 一只| 鵝 | 追 | 趕 | 下 | 蛋 | 恨 |
上傳時間: 2014-12-02
上傳用戶:jkhjkh1982
On-Line MCMC Bayesian Model Selection This demo demonstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps to perform model selection in neural networks. We treat both the model dimension (number of neurons) and model parameters as unknowns. The derivation and details are presented in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Sequential Bayesian Estimation and Model Selection Applied to Neural Networks . Technical report CUED/F-INFENG/TR 341, Cambridge University Department of Engineering, June 1999. After downloading the file, type "tar -xf version2.tar" to uncompress it. This creates the directory version2 containing the required m files. Go to this directory, load matlab5 and type "smcdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.
標簽: demonstrates sequential Selection Bayesian
上傳時間: 2016-04-07
上傳用戶:lindor
This demo nstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps to perform model selection in neural networks. We treat both the model dimension (number of neurons) and model parameters as unknowns. The derivation and details are presented in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Sequential Bayesian Estimation and Model Selection Applied to Neural Networks . Technical report CUED/F-INFENG/TR 341, Cambridge University Department of Engineering, June 1999. After downloading the file, type "tar -xf version2.tar" to uncompress it. This creates the directory version2 containing the required m files. Go to this directory, load matlab5 and type "smcdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.
標簽: sequential reversible algorithm nstrates
上傳時間: 2014-01-18
上傳用戶:康郎
This demo nstrates the use of the reversible jump MCMC algorithm for neural networks. It uses a hierarchical full Bayesian model for neural networks. This model treats the model dimension (number of neurons), model parameters, regularisation parameters and noise parameters as random variables that need to be estimated. The derivations and proof of geometric convergence are presented, in detail, in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Robust Full Bayesian Learning for Neural Networks. Technical report CUED/F-INFENG/TR 343, Cambridge University Department of Engineering, May 1999. After downloading the file, type "tar -xf rjMCMC.tar" to uncompress it. This creates the directory rjMCMC containing the required m files. Go to this directory, load matlab5 and type "rjdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.
標簽: reversible algorithm the nstrates
上傳時間: 2014-01-08
上傳用戶:cuibaigao
A novel met hod t o p artially compensate sigma2delta shap ed noise is p rop osed. By injecting t he comp en2 sation cur rent int o t he p assive loop f ilte r during t he delay time of t he p hase f requency detect or ( PFD) , a maximum reduction of t he p hase noise by about 16dB can be achieved. Comp a red t o ot he r compensation met hods , t he tech2 nique p rop osed he re is relatively simple and easy t o implement . Key building blocks f or realizing t he noise cancel2 lation , including t he delay va riable PFD and comp ensation cur rent source , a re sp ecially designed. Bot h t he behavior level and circuit level simulation results a re p resented.
標簽: sigma2delta compensate injecting artially
上傳時間: 2013-12-18
上傳用戶:qlpqlq
這些可以實現信號調制,比如fsk,bpsk,ask,eqpsk,ook等,并畫出相應的時域和頻域波形,非常實用的源碼。
標簽: 信號調制
上傳時間: 2013-12-28
上傳用戶:qazxsw
漢諾塔!!! Simulate the movement of the Towers of Hanoi puzzle Bonus is possible for using animation eg. if n = 2 A→B A→C B→C if n = 3 A→C A→B C→B A→C B→A B→C A→C
標簽: the animation Simulate movement
上傳時間: 2017-02-11
上傳用戶:waizhang
將魔王的語言抽象為人類的語言:魔王語言由以下兩種規則由人的語言逐步抽象上去的:α-〉β1β2β3…βm ;θδ1δ2…-〉θδnθδn-1…θδ1 設大寫字母表示魔王的語言,小寫字母表示人的語言B-〉tAdA,A-〉sae,eg:B(ehnxgz)B解釋為tsaedsaeezegexenehetsaedsae對應的話是:“天上一只鵝地上一只鵝鵝追鵝趕鵝下鵝蛋鵝恨鵝天上一只鵝地上一只鵝”。(t-天d-地s-上a-一只e-鵝z-追g-趕x-下n-蛋h-恨)
上傳時間: 2013-12-19
上傳用戶:aix008
本代碼為編碼開關代碼,編碼開關也就是數字音響中的 360度旋轉的數字音量以及顯示器上用的(單鍵飛梭開 關)等類似鼠標滾輪的手動計數輸入設備。 我使用的編碼開關為5個引腳的,其中2個引腳為按下 轉輪開關(也就相當于鼠標中鍵)。另外3個引腳用來 檢測旋轉方向以及旋轉步數的檢測端。引腳分別為a,b,c b接地a,c分別接到P2.0和P2.1口并分別接兩個10K上拉 電阻,并且a,c需要分別對地接一個104的電容,否則 因為編碼開關的觸點抖動會引起輕微誤動作。本程序不 使用定時器,不占用中斷,不使用延時代碼,并對每個 細分步數進行判斷,避免一切誤動作,性能超級穩定。 我使用的編碼器是APLS的EC11B可以參照附件的時序圖 編碼器控制流水燈最能說明問題,下面是以一段流水 燈來演示。
上傳時間: 2017-07-03
上傳用戶:gaojiao1999