This paper studies the problem of tracking a ballistic object in
the reentry phase by processing radar measurements. A suitable
(highly nonlinear) model of target motion is developed and the
theoretical Cramer—Rao lower bounds (CRLB) of estimation
error are derived. The estimation performance (error mean and
This paper studies the problem of tracking a ballistic object in
the reentry phase by processing radar measurements. A suitable
(highly nonlinear) model of target motion is developed and the
theoretical Cramer—Rao lower bounds (CRLB) of estimation
error are derived. The estimation performance (error mean and
This paper studies the problem of tracking a ballistic object in
the reentry phase by processing radar measurements. A suitable
(highly nonlinear) model of target motion is developed and the
theoretical Cramer—Rao lower bounds (CRLB) of estimation
error are derived. The estimation performance (error mean and
We consider the problem of target localization by a
network of passive sensors. When an unknown target emits an
acoustic or a radio signal, its position can be localized with multiple
sensors using the time difference of arrival (TDOA) information.
In this paper, we consider the maximum likelihood formulation
of this target localization problem and provide efficient convex
relaxations for this nonconvex optimization problem.We also propose
a formulation for robust target localization in the presence of
sensor location errors. Two CRAMER-Rao bounds are derived corresponding
to situations with and without sensor node location errors.
Simulation results confirm the efficiency and superior performance
of the convex relaxation approach as compared to the
existing least squares based approach when large sensor node location
errors are present.
The software implements particle filtering and Rao Blackwellised particle filtering for conditionally Gaussian Models. The RB algorithm can be interpreted as an efficient stochastic mixture of Kalman filters. The software also includes efficient state-of-the-art resampling routines. These are generic and suitable for any application.
Rao-Blackwellised Particle Filters (RBPFs) are a class of Particle
Filters (PFs) that exploit conditional dependencies between
parts of the state to estimate. By doing so, RBPFs can
improve the estimation quality while also reducing the overall
computational load in comparison to original PFs. However,
the computational complexity is still too high for many
real-time applications. In this paper, we propose a modified
RBPF that requires a single Kalman Filter (KF) iteration per
input sample. Comparative experiments show that while good
convergence can still be obtained, computational efficiency is
always drastically increased, making this algorithm an option
to consider for real-time implementations.
n this demo, we show how to use Rao-Blackwellised particle filtering to exploit the conditional independence structure of a simple DBN. The derivation and details are presented in A Simple Tutorial on Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks. This detailed discussion of the ABC network should complement the UAI2000 paper by Arnaud Doucet, Nando de Freitas, Kevin Murphy and Stuart Russell. After downloading the file, type "tar -xf demorbpfdbn.tar" to uncompress it. This creates the directory webalgorithm containing the required m files. Go to this directory, load matlab5 and type "dbnrbpf" for the demo.
The software implements particle filtering and Rao Blackwellised particle filtering for conditionally Gaussian Models. The RB algorithm can be interpreted as an efficient stochastic mixture of Kalman filters. The software also includes efficient state-of-the-art resampling routines. These are generic and suitable for any application. For details, please refer to Rao-Blackwellised Particle Filtering for Fault Diagnosis and On Sequential Simulation-Based Methods for Bayesian Filtering After downloading the file, type "tar -xf demo_rbpf_gauss.tar" to uncompress it. This creates the directory webalgorithm containing the required m files. Go to this directory, load matlab and run the demo.