adio Frequency Identification (RFID) is a rapidly developing automatic wireless data-collection
technology with a long history.The first multi-bit functional passive RFID systems,with a range of
several meters, appeared in the early 1970s, and continued to evolve through the 1980s. Recently,
RFID has experienced a tremendous growth,due to developments in integrated Circuits and radios,
and due to increased interest from the retail industrial and government.
If one examines the current literature on GPS receiver design, most of it is quite a
bit above the level of the novice. It is taken for granted that the reader is already at a
fairly high level of understanding and proceeds from there. This text will be an
attempt to take the reader through the concepts and Circuits needed to be able to
understand how a GPS receiver works from the antenna to the solution of user
position.
This book is intended to be a general introduction to neural networks for those with a computer
architecture, Circuits, or systems background. In the introduction (Chapter 1), we define key vo-
cabulary, recap the history and evolution of the techniques, and for make the case for additional
hardware support in the field.
Design for manufacturability and statistical design encompass a number
of activities and areas of study spanning the integrated circuit design and
manufacturing worlds. In the early days of the planar integrated circuit, it was
typical for a handful of practitioners working on a particular design to have
a fairly complete understanding of the manufacturing process, the resulting
semiconductor active and passive devices, as well as the resulting circuit -
often composed of as few as tens of devices. With the success of semiconductor
scaling, predicted and - to a certain extent even driven - by Moore’s law, and
the vastly increased complexity of modern nano-meter scale processes and the
billion-device Circuits they allow, there came a necessary separation between
the various disciplines.
Wherever possible the overall technique used for this series will be "definition by example" withgeneric formulae included for use in other applications. To make stability analysis easy we will usemore than one tool from our toolbox with data sheet information, tricks, rules-of-thumb, SPICESimulation, and real-world testing all accelerating our design of stable operational amplifier (op amp)Circuits. These tools are specifically targeted at voltage feedback op amps with unity-gain bandwidths<20 MHz, although many of the techniques are applicable to any voltage feedback op amp. 20 MHz ischosen because as we increase to higher bandwidth Circuits there are other major factors in closing theloop: such as parasitic capacitances on PCBs, parasitic inductances in capacitors, parasitic inductancesand capacitances in resistors, etc. Most of the rules-of-thumb and techniques were developed not justfrom theory but from the actual building of real-world Circuits with op amps <20 MHz.
CHAPTER 1: THE OP AMP CHAPTER 2: OTHER LINEAR Circuits CHAPTER 3: SENSORS CHAPTER 4: RF/IF Circuits CHAPTER 5: FUNDAMENTALS OF SAMPLED DATA SYSTEMS CHAPTER 6: CONVERTERS CHAPTER 7: DATA CONVERTER SUPPORT Circuits CHAPTER 8: ANALOG FILTERS CHAPTER 9: POWER MANAGEMENT CHAPTER 10: PASSIVE COMPONENTS CHAPTER 11: OVERVOLTAGE EFFECTS ON ANALOG INTEGRATED Circuits CHAPTER 12: PRINTED CIRCUIT BOARD (PCB) DESIGN ISSUES CHAPTER 13: DESIGN DEVELOPMENT TOOLS
The PW3130 series product is a high integration solution for lithium-lion/polymer batteryprotection.PW3130 contains advanced power MOSFET, high-accuracy voltage detection Circuits anddelay Circuits. PW3130 is put into an ultra-small SOT23-5 package and only one external componentmakes it an ideal solution in limited space of battery pack. PW3130 has all the protection functionsrequired in the battery application including overcharging, overdischarging, overcurrent and loadshort circuiting protection etc. The accurate overcharging detection voltage ensures safe and fullutilization charging.The low standby current drains little current from the cell while in storage. Thedevice is not only targeted for digital cellular phones, but also for any other Li-Ion and Li-Polybattery-powered information appliances requiring long-term battery life
Agilent 34401A Service Guide.pdfIEC Measurement Category II includes electrical devices connected to mains at an outlet on a branch circuit. Such devices include
most small appliances, test equipment, and
other devices that plug into a branch outlet
or socket. The 34401A may be used to make
measurements with the HI and LO inputs
connected to mains in such devices, or to
the branch outlet itself (up to 300 VAC).
However, the 34401A may not be used with
its HI and LO inputs connected to mains in
permanently installed electrical devices
such as the main circuit-breaker panel,
sub-panel disconnect boxes, or permanently
wired motors. Such devices and Circuits are
subject to overvoltages that may exceed the
protection limits of the 34401A.
Note: Voltages above 300 VAC may be measured only in Circuits that are isolated from
mains. However, transient overvoltages are
also present on Circuits that are isolated
from mains. The Agilent 34401A are
designed to safely withstand occasional
transient overvoltages up to 2500 Vpk. Do
not use this equipment to measure Circuits
where transient overvoltages could exceed
this level.
Additional Notices
Waste Electrical and
Electronic Equipment (WEEE)
Directive 2002/96/EC
This product complies with the WEEE Directive (2002/96/EC) marking requirement.
The affixed product label (see below) indicates that you must not discard this electrical/electronic product in domestic
household waste.
Product Category: With reference to the
equipment types in the WEEE directive
Annex 1, this product is classified as a
"Monitoring and Control instrumentation"
product.
Do not dispose in domestic household
waste.
To return unwanted products, contact your
local Agilent office, or see
www.agilent.com/environment/product
for more information.
Agilent 34138A Test Lead Set
The Agilent 34401A is compatible with the
Agilent 34138A Test Lead Set described
below.
Test Lead Ratings
Test Leads - 1000V, 15A
Fine Tip Probe Attachments - 300V, 3A
Mini Grabber Attachment - 300V, 3A
SMT Grabber Attachments - 300V, 3A
Operation
The Fine Tip, Mini Grabber, and SMT Grabber attachments plug onto the probe end of
the Test Leads.
Maintenance
If any portion of the Test Lead Set is worn or
damaged, do not use. Replace with a new
Agilent 3413