This document provides practical, common guidelines for incorporating PCI Express interconnect
layouts onto Printed Circuit Boards (PCB) ranging from 4-layer desktop baseboard designs to 10-
layer or more server baseboard designs. Guidelines and constraints in this document are intended
for use on both baseboard and add-in card PCB designs. This includes interconnects between PCI
Express devices located on the same baseboard (chip-to-chip routing) and interconnects between
a PCI Express device located “down” on the baseboard and a device located “up” on an add-in
card attached through a Connector.
This document is intended to cover all major components of the physical interconnect including
design guidelines for the PCB traces, vias and AC coupling capacitors, as well as add-in card
edge-finger and Connector considerations. The intent of the guidelines and examples is to help
ensure that good high-speed signal design practices are used and that the timing/jitter and
loss/attenuation budgets can also be met from end-to-end across the PCI Express interconnect.
However, while general physical guidelines and suggestions are given, they may not necessarily
guarantee adequate performance of the interconnect for all layouts and implementations.
Therefore, designers should consider modeling and simulation of the interconnect in order to
ensure compliance to all applicable specifications.
The document is composed of two main sections. The first section provides an overview of
general topology and interconnect guidelines. The second section concentrates on physical layout
constraints where bulleted items at the beginning of a topic highlight important constraints, while
the narrative that follows offers additional insight.
This product integration guide provides application circuit information for theSmartMesh® LTP5903PC wireless embedded network manager. This guide is acompanion to the 020-0039 SmartMesh LTP5903PC Datasheet, whichdescribes overall product behavior, including detailed information about normaloperating conditions, electrical and mechanical specifications, hardware andsoftware interfaces, and Connector pinouts.
The LTC®4155 and LTC4156 are dual multiplexed-inputbattery chargers with PowerPath™ control, featuring I2Cprogrammability and USB On-The-Go for systems suchas tablet PCs and other high power density applications.The LTC4155’s float voltage (VFLOAT) range is optimizedfor Li-Ion batteries, while the LTC4156 is optimized forlithium iron phosphate (LiFePO4)batteries, supportingsystem loads to 4A with up to 3.5A of battery chargecurrent. I2C controls a broad range of functions and USBOn-The-Go functionality is controlled directly from theUSB Connector ID pin.