In this paper, we discuss efficient coding and design styles using verilog. This can beimmensely helpful for any digital designer initiating designs. Here, we address different problems rangingfrom RTL-Gate Level simulation mismatch to race conditions in writing behavioral models. All theseproblems are accompanied by an example to have a better idea, and these can be taken care off if thesecoding guidelines are followed. Discussion of all the techniques is beyond the scope of this paper, however,here we try to cover a few of them.
This unique guide to designing digital VLSI circuits takes a top-down approach, reflecting the natureof the design process in industry. Starting with architecture design, the book explains the why andhow of digital design, using the physics that designers need to know, and no more.Covering system and component aspects, design verification, VHDL modelling, clocking, signalintegrity, layout, electricaloverstress, field-programmable logic, economic issues, and more, thescope of the book is singularly comprehensive.
•Founded in Jan. 08, 2001 in Shanghai, China.•Fabless IDH focused on Analog & Mixed Signal Chip design & marketing •Over 100 IC introduced.•Over 200 OEM Customer worldwide•ISO-9000 Certified•Distribution Channel in Taiwan, China & Japan
To achieve 100% customer satisfactionby producing the technically advanced product with the best quality, on-time delivery and service.
Leverages on proprietary process and world-class engineering team to develop innovative & high quality analog solutions that add value to electronics equipment.
Abstract: Using a wafer-level package (WLP) can reduce the overall size and cost of your solution.However when using a WLP IC, the printed circuit board (PCB) layout can become more complex and, ifnot carefully planned, result in an unreliable design. This article presents some PCB designconsiderations and general recommendations for choosing a 0.4mm- or 0.5mm-pitch WLP for yourapplication.
以太網和CAN總線應用廣泛,但由于其通信協議不同,兩種總線器件間無法進行數據通信,因此,設計了基于CP2200與C8051F040的以太網總線與CAN總線接口轉換電路,并給出部分相關硬件電路與軟件設計分析。在保證數據完整和協議可靠的前提下,通過握手協議和簡化的以太網協議,不僅實現了以太網數據與CAN數據的轉發,同時還順利的解決了以太網的高速性與CAN的低速率沖突,以及兩者數據包之間的大小不同的矛盾。
Abstract: In the development of actual application, Ethernet and CAN bus are used very extensively. Owing to its various communication protocols, the communicating between two kinds of bus device can’t be carried out. Therefore, in order to solve this problem, the Ethernet-CAN bus interface circuit based on CP2200 and C8051F040 was designed in this paper, and part of the related hardware circuit and software design analysis were given. On the condition of data’s integrity and protocols’reliability, through the handshaking protocols and the simplified the Ethernet protocol, not only the data switching between CAN and Ethernet was realized, but also the differ in velocity and packet size was solved.
This white paper discusses how market trends, the need for increased productivity, and new legislation have
accelerated the use of safety systems in industrial machinery. This TÜV-qualified FPGA design methodology is
changing the paradigms of safety designs and will greatly reduce development effort, system complexity, and time to
market. This allows FPGA users to design their own customized safety controllers and provides a significant
competitive advantage over traditional microcontroller or ASIC-based designs.
Introduction
The basic motivation of deploying functional safety systems is to ensure safe operation as well as safe behavior in
cases of failure. Examples of functional safety systems include train brakes, proximity sensors for hazardous areas
around machines such as fast-moving robots, and distributed control systems in process automation equipment such
as those used in petrochemical plants.
The International Electrotechnical Commission’s standard, IEC 61508: “Functional safety of
electrical/electronic/programmable electronic safety-related systems,” is understood as the standard for designing
safety systems for electrical, electronic, and programmable electronic (E/E/PE) equipment. This standard was
developed in the mid-1980s and has been revised several times to cover the technical advances in various industries.
In addition, derivative standards have been developed for specific markets and applications that prescribe the
particular requirements on functional safety systems in these industry applications. Example applications include
process automation (IEC 61511), machine automation (IEC 62061), transportation (railway EN 50128), medical (IEC
62304), automotive (ISO 26262), power generation, distribution, and transportation.
圖Figure 1. Local Safety System