亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

Developed

  • 基于USB接口的數據采集模塊的設計與實現

    基于USB接口的數據采集模塊的設計與實現Design and Implementation of USB-Based Data Acquisition Module路 永 伸(天津科技大學電子信息與自動化學院,天津300222)摘要文中給出基于USB接口的數據采集模塊的設計與實現。硬件設計采用以Adpc831與PDIUSBDI2為主的器件進行硬件設計,采用Windriver開發USB驅動,并用Visual C十十6.0對主機軟件中硬件接口操作部分進行動態鏈接庫封裝。關鍵詞USB 數據采集Adpc831 PDNSBDI2 Windriver動態鏈接庫Abstract T hed esigna ndim plementaitono fU SB-BasedD ataA cquisiitonM oduleis g iven.Th ec hips oluitonm ainlyw ithA dpc831a ndP DTUSBD12i sused for hardware design. The USB drive is Developed場Wmdriver, and the operation on the hardware interface is packaged into Dynamic Link Libraries場Visual C++6.0.  Keywords USB DataA cquisition Adttc831 PDfUSBD12 Windriver0 引言US B總 線 是新一代接口總線,最初推出的目的是為了統一取代PC機的各類外設接口,迄今經歷了1.0,1.1與2.0版本3個標準。在國內基于USB總線的相關設計與開發也得到了快速的發展,很多設計者從各自的應用領域,用不同方案設計出了相應的裝置[1,2]。數據采集是工業控制中一個普遍而重要的環節,因此開發基于USB接口的數據采集模塊具有很強的現實應用意義。雖然 US B總線標準已經發展到2.0版本,但由于工業控制現場干擾信號的情況比較復雜,高速數據傳輸的可靠性不容易被保證,并且很多場合對數據采集的實時性要求并不高,開發2.0標準產品的成本又較1.1標準產品高,所以筆者認為,在工業控制領域,目前開發基于USB總線1.1標準實現的數據采集模塊的實用意義大于相應2.0標準模塊。

    標簽: USB 接口 數據采集模塊

    上傳時間: 2013-10-23

    上傳用戶:q3290766

  • 采用TüV認證的FPGA開發功能安全系統

    This white paper discusses how market trends, the need for increased productivity, and new legislation have accelerated the use of safety systems in industrial machinery. This TÜV-qualified FPGA design methodology is changing the paradigms of safety designs and will greatly reduce development effort, system complexity, and time to market. This allows FPGA users to design their own customized safety controllers and provides a significant competitive advantage over traditional microcontroller or ASIC-based designs. Introduction The basic motivation of deploying functional safety systems is to ensure safe operation as well as safe behavior in cases of failure. Examples of functional safety systems include train brakes, proximity sensors for hazardous areas around machines such as fast-moving robots, and distributed control systems in process automation equipment such as those used in petrochemical plants. The International Electrotechnical Commission’s standard, IEC 61508: “Functional safety of electrical/electronic/programmable electronic safety-related systems,” is understood as the standard for designing safety systems for electrical, electronic, and programmable electronic (E/E/PE) equipment. This standard was Developed in the mid-1980s and has been revised several times to cover the technical advances in various industries. In addition, derivative standards have been Developed for specific markets and applications that prescribe the particular requirements on functional safety systems in these industry applications. Example applications include process automation (IEC 61511), machine automation (IEC 62061), transportation (railway EN 50128), medical (IEC 62304), automotive (ISO 26262), power generation, distribution, and transportation. 圖Figure 1. Local Safety System

    標簽: FPGA 安全系統

    上傳時間: 2013-11-05

    上傳用戶:維子哥哥

  • MEMS 經典教材

    The field of microelectromechanical systems (MEMS), particularly micromachinedmechanical transducers, has been expanding over recent years, and the productioncosts of these devices continue to fall. Using materials, fabrication processes, anddesign tools originally Developed for the microelectronic circuits industry, newtypes of microengineered device are evolving all the time—many offering numerousadvantages over their traditional counterparts. The electrical properties of siliconhave been well understood for many years, but it is the mechanical properties thathave been exploited in many examples of MEMS. This book may seem slightlyunusual in that it has four editors. However, since we all work together in this fieldwithin the School of Electronics and Computer Science at the University of Southampton,it seemed natural to work together on a project like this. MEMS are nowappearing as part of the syllabus for both undergraduate and postgraduate coursesat many universities, and we hope that this book will complement the teaching thatis taking place in this area.

    標簽: MEMS 教材

    上傳時間: 2013-10-16

    上傳用戶:朗朗乾坤

  • 差分電路中單端及混合模式S-參數的使用

    Single-Ended and Differential S-Parameters Differential circuits have been important incommunication systems for many years. In the past,differential communication circuits operated at lowfrequencies, where they could be designed andanalyzed using lumped-element models andtechniques. With the frequency of operationincreasing beyond 1GHz, and above 1Gbps fordigital communications, this lumped-elementapproach is no longer valid, because the physicalsize of the circuit approaches the size of awavelength.Distributed models and analysis techniques are nowused instead of lumped-element techniques.Scattering parameters, or S-parameters, have beenDeveloped for this purpose [1]. These S-parametersare defined for single-ended networks. S-parameterscan be used to describe differential networks, but astrict definition was not Developed until Bockelmanand others addressed this issue [2]. Bockelman’swork also included a study on how to adapt single-ended S-parameters for use with differential circuits[2]. This adaptation, called “mixed-mode S-parameters,” addresses differential and common-mode operation, as well as the conversion betweenthe two modes of operation.This application note will explain the use of single-ended and mixed-mode S-parameters, and the basicconcepts of microwave measurement calibration.

    標簽: 差分電路 單端 模式

    上傳時間: 2014-03-25

    上傳用戶:yyyyyyyyyy

  • S參數的設計與應用

    Agilent AN 154 S-Parameter Design Application Note S參數的設計與應用 The need for new high-frequency, solid-state circuitdesign techniques has been recognized both by microwaveengineers and circuit designers. These engineersare being asked to design solid state circuitsthat will operate at higher and higher frequencies.The development of microwave transistors andAgilent Technologies’ network analysis instrumentationsystems that permit complete network characterizationin the microwave frequency rangehave greatly assisted these engineers in their work.The Agilent Microwave Division’s lab staff hasDeveloped a high frequency circuit design seminarto assist their counterparts in R&D labs throughoutthe world. This seminar has been presentedin a number of locations in the United States andEurope.From the experience gained in presenting this originalseminar, we have Developed a four-part videotape, S-Parameter Design Seminar. While the technologyof high frequency circuit design is everchanging, the concepts upon which this technologyhas been built are relatively invariant.The content of the S-Parameter Design Seminar isas follows:

    標簽: S參數

    上傳時間: 2013-12-19

    上傳用戶:aa54

  • Algorithms(算法概論)pdf

    This book evolved over the past ten years from a set of lecture notes Developed while teaching the undergraduate Algorithms course at Berkeley and U.C. San Diego. Our way of teaching this course evolved tremendously over these years in a number of directions, partly to address our students' background (unDeveloped formal skills outside of programming), and partly to reect the maturing of the eld in general, as we have come to see it. The notes increasingly crystallized into a narrative, and we progressively structured the course to emphasize the ?story line? implicit in the progression of the material. As a result, the topics were carefully selected and clustered. No attempt was made to be encyclopedic, and this freed us to include topics traditionally de-emphasized or omitted from most Algorithms books.

    標簽: Algorithms 算法

    上傳時間: 2013-11-11

    上傳用戶:JamesB

  • 采用TüV認證的FPGA開發功能安全系統

    This white paper discusses how market trends, the need for increased productivity, and new legislation have accelerated the use of safety systems in industrial machinery. This TÜV-qualified FPGA design methodology is changing the paradigms of safety designs and will greatly reduce development effort, system complexity, and time to market. This allows FPGA users to design their own customized safety controllers and provides a significant competitive advantage over traditional microcontroller or ASIC-based designs. Introduction The basic motivation of deploying functional safety systems is to ensure safe operation as well as safe behavior in cases of failure. Examples of functional safety systems include train brakes, proximity sensors for hazardous areas around machines such as fast-moving robots, and distributed control systems in process automation equipment such as those used in petrochemical plants. The International Electrotechnical Commission’s standard, IEC 61508: “Functional safety of electrical/electronic/programmable electronic safety-related systems,” is understood as the standard for designing safety systems for electrical, electronic, and programmable electronic (E/E/PE) equipment. This standard was Developed in the mid-1980s and has been revised several times to cover the technical advances in various industries. In addition, derivative standards have been Developed for specific markets and applications that prescribe the particular requirements on functional safety systems in these industry applications. Example applications include process automation (IEC 61511), machine automation (IEC 62061), transportation (railway EN 50128), medical (IEC 62304), automotive (ISO 26262), power generation, distribution, and transportation. 圖Figure 1. Local Safety System

    標簽: FPGA 安全系統

    上傳時間: 2013-11-14

    上傳用戶:zoudejile

  • US Navy VHDL Modelling Guide

      This document was Developed under the Standard Hardware and Reliability Program (SHARP) TechnologyIndependent Representation of Electronic Products (TIREP) project. It is intended for use by VHSIC HardwareDescription Language (VHDL) design engineers and is offered as guidance for the development of VHDL modelswhich are compliant with the VHDL Data Item Description (DID DI-EGDS-80811) and which can be providedto manufacturing engineering personnel for the development of production data and the subsequent productionof hardware. Most VHDL modeling performed to date has been concentrated at either the component level orat the conceptual system level. The assembly and sub-assembly levels have been largely disregarded. Under theSHARP TIREP project, an attempt has been made to help close this gap. The TIREP models are based upon lowcomplexity Standard Electronic Modules (SEM) of the format A configuration. Although these modules are quitesimple, it is felt that the lessons learned offer guidance which can readily be applied to a wide range of assemblytypes and complexities.

    標簽: Modelling Guide Navy VHDL

    上傳時間: 2013-11-20

    上傳用戶:pzw421125

  • allegro cx manual教程

    We would like to welcome you as a user of the Allegro CX, a rugged, handheld fi  eld PC for data collection. Developed with the input of data collection professionals worldwide, the Allegro CX is adaptable and versatile for use in a wide variety of data collection environments. The Allegro CX continues to utilize our ergonomic, lightweight design that is standard in our line of Allegro Field PCs. This design makes your Allegro easy to use for extended periods while moving to and from data collection sites in the fi  eld.  

    標簽: allegro manual cx 教程

    上傳時間: 2015-01-02

    上傳用戶:zhangyi99104144

  • 開關電源EMI設計(英文版)

    Integrated EMI/Thermal Design forSwitching Power SuppliesWei ZhangThesis submitted to the Faculty of theVirginia Polytechnic Institute and State Universityin partial fulfillment of the requirements for the degree of Integrated EMI/Thermal Design forSwitching Power SuppliesWei Zhang(ABSTRACT)This work presents the modeling and analysis of EMI and thermal performancefor switch power supply by using the CAD tools. The methodology and design guidelinesare Developed.By using a boost PFC circuit as an example, an equivalent circuit model is builtfor EMI noise prediction and analysis. The parasitic elements of circuit layout andcomponents are extracted analytically or by using CAD tools. Based on the model, circuitlayout and magnetic component design are modified to minimize circuit EMI. EMI filtercan be designed at an early stage without prototype implementation.In the second part, thermal analyses are conducted for the circuit by using thesoftware Flotherm, which includes the mechanism of conduction, convection andradiation. Thermal models are built for the components. Thermal performance of thecircuit and the temperature profile of components are predicted. Improved thermalmanagement and winding arrangement are investigated to reduce temperature.In the third part, several circuit layouts and inductor design examples are checkedfrom both the EMI and thermal point of view. Insightful information is obtained.

    標簽: EMI 開關電源 英文

    上傳時間: 2013-11-16

    上傳用戶:萍水相逢

主站蜘蛛池模板: 庆云县| 合阳县| 白山市| 清新县| 揭阳市| 五寨县| 卢湾区| 济阳县| 区。| 黄山市| 都兰县| 雷波县| 九龙城区| 老河口市| 麻阳| 张掖市| 石柱| 德令哈市| 湾仔区| 大英县| 甘泉县| 那坡县| 略阳县| 周宁县| 海门市| 双江| 铁岭市| 周至县| 东乡| 扎囊县| 马龙县| 平原县| 邢台县| 五台县| 上饶县| 怀宁县| 吉安县| 太和县| 吴堡县| 淅川县| 广宗县|