Agilent AN 154 S-Parameter Design Application Note S參數的設計與應用
The need for new high-frequency, solid-state circuitdesign techniques has been recognized both by microwaveengineers and circuit designers. These engineersare being asked to design solid state circuitsthat will operate at higher and higher frequencies.The Development of microwave transistors andAgilent Technologies’ network analysis instrumentationsystems that permit complete network characterizationin the microwave frequency rangehave greatly assisted these engineers in their work.The Agilent Microwave Division’s lab staff hasdeveloped a high frequency circuit design seminarto assist their counterparts in R&D labs throughoutthe world. This seminar has been presentedin a number of locations in the United States andEurope.From the experience gained in presenting this originalseminar, we have developed a four-part videotape, S-Parameter Design Seminar. While the technologyof high frequency circuit design is everchanging, the concepts upon which this technologyhas been built are relatively invariant.The content of the S-Parameter Design Seminar isas follows:
提出了一種以ARM微處理器為控制核心的遠程無線視頻監控終端的設計方案,其監控終端的硬件設計包括視頻采集處理、中央管理控制、無線傳輸3個模塊。并給出了監控終端的軟件開發平臺和開發模式的系統啟動代碼、嵌入式Linux系統移植以及驅動程序和應用程序。測試結果表明,該監控終端設計方案合理、有效,基本滿足監控需求。
Abstract:
A remote wireless video monitoring terminal design, which uses ARM microprocessor as its core control, is proposed in this paper.The hardware design of monitoring terminal system is composed of the video acquisition and processing module, the central management and control module, wireless transmission module.Meanwhile the monitoring terminal-s software Development platform and Development patterns are designed. Also the design of the system-s start codes, embedded Linux system-s transplantation process, driver and the corresponding applications are given. The results showed that the monitoring terminal design is reasonable, effective, basically meet monitoring requirements.
This white paper discusses how market trends, the need for increased productivity, and new legislation have
accelerated the use of safety systems in industrial machinery. This TÜV-qualified FPGA design methodology is
changing the paradigms of safety designs and will greatly reduce Development effort, system complexity, and time to
market. This allows FPGA users to design their own customized safety controllers and provides a significant
competitive advantage over traditional microcontroller or ASIC-based designs.
Introduction
The basic motivation of deploying functional safety systems is to ensure safe operation as well as safe behavior in
cases of failure. Examples of functional safety systems include train brakes, proximity sensors for hazardous areas
around machines such as fast-moving robots, and distributed control systems in process automation equipment such
as those used in petrochemical plants.
The International Electrotechnical Commission’s standard, IEC 61508: “Functional safety of
electrical/electronic/programmable electronic safety-related systems,” is understood as the standard for designing
safety systems for electrical, electronic, and programmable electronic (E/E/PE) equipment. This standard was
developed in the mid-1980s and has been revised several times to cover the technical advances in various industries.
In addition, derivative standards have been developed for specific markets and applications that prescribe the
particular requirements on functional safety systems in these industry applications. Example applications include
process automation (IEC 61511), machine automation (IEC 62061), transportation (railway EN 50128), medical (IEC
62304), automotive (ISO 26262), power generation, distribution, and transportation.
圖Figure 1. Local Safety System
Nios II軟件構建工具入門
The Nios® II Software Build Tools (SBT) allows you to construct a wide variety of
complex embedded software systems using a command-line interface. From this
interface, you can execute Software Built Tools command utilities, and use scripts
other tools) to combine the command utilities in many useful ways.
This chapter introduces you to project creation with the SBT at the command line
This chapter includes the following sections:
■ “Advantages of Command-Line Software Development”
■ “Outline of the Nios II SBT Command-Line Interface”
■ “Getting Started in the SBT Command Line”
■ “Software Build Tools Scripting Basics” on page 3–8
面向Eclips的Nios II軟件構建工具手冊
The Nios® II Software Build Tools (SBT) for Eclipse™ is a set of plugins based on the
Eclipse™ framework and the Eclipse C/C++ Development toolkit (CDT) plugins. The
Nios II SBT for Eclipse provides a consistent Development platform that works for all
Nios II embedded processor systems. You can accomplish all Nios II software
Development tasks within Eclipse, including creating, editing, building, running,
debugging, and profiling programs.
Abstract: This application note discusses the Development and deployment of 3G cellular femtocell base stations. The technicalchallenges for last-mile residential connectivity and adding system capacity in dense urban environments are discussed, with 3Gfemtocell base stations as a cost-effective solution. Maxim's 3GPP TS25.104-compliant transceiver solution is presented along withcomplete radio reference designs such as RD2550. For more information on the RD2550, see reference design 5364, "FemtocellRadio Reference Designs Using the MAX2550–MAX2553 Transceivers."
The Xilinx Zynq-7000 Extensible Processing Platform (EPP) redefines the possibilities for embedded systems, giving system and software architects and developers a flexible platform to launch their new solutions and traditional ASIC and ASSP users an alternative that aligns with today’s programmable imperative. The new class of product elegantly combines an industrystandard ARMprocessor-based system with Xilinx 28nm programmable logic—in a single device. The processor boots first, prior to configuration of the programmable logic. This, along with a streamlined workflow, saves time and effort and lets software developers and hardware designers start Development simultaneously.
This document was developed under the Standard Hardware and Reliability Program (SHARP) TechnologyIndependent Representation of Electronic Products (TIREP) project. It is intended for use by VHSIC HardwareDescription Language (VHDL) design engineers and is offered as guidance for the Development of VHDL modelswhich are compliant with the VHDL Data Item Description (DID DI-EGDS-80811) and which can be providedto manufacturing engineering personnel for the Development of production data and the subsequent productionof hardware. Most VHDL modeling performed to date has been concentrated at either the component level orat the conceptual system level. The assembly and sub-assembly levels have been largely disregarded. Under theSHARP TIREP project, an attempt has been made to help close this gap. The TIREP models are based upon lowcomplexity Standard Electronic Modules (SEM) of the format A configuration. Although these modules are quitesimple, it is felt that the lessons learned offer guidance which can readily be applied to a wide range of assemblytypes and complexities.