單片機之PPT篇 單片機特點及其發展概況•單片機區別于微處理器•單片機的廣泛應用 單片機用作微控制器,與微處理器相比,最大特點是單片化、體積大大減小,片上外設資源一般比較豐富,適合于控制。在一塊硅片上集成CPU、RAM、ROM、定時器/計數器、和多種I/O的完整的數字處理系統。•微處理器是由通用計算機中的CPU演變而來的,具有32位以上的處理器,具有較高的性能。•在PC機以286、386、Pentium、PIII高速更新換代的同時,單片機卻“始終如一”保持旺盛的生命力。而單片機實際使用的多為8位的。
標簽: 單片機
上傳時間: 2013-11-13
上傳用戶:ydd3625
51單片機C語言快速上手51單片機是對目前所有兼容Intel 8031指令系統的單片機的統稱。該系列單片機的始祖是Intel的8031單片機,后來隨著Flash rom技術的發展,8031單片機取得了長足的進展,成為目前應用最廣泛的8位單片機之一,其代表型號是ATMEL公司的AT89系列,它廣泛應用于工業測控系統之中。目前很多公司都有51系列的兼容機型推出,在目前乃至今后很長的一段時間內將占有大量市場 作為一個初學者,如何單片機入門? 知識上,其實不需要多少東西,會簡單的C語言,知道51單片機的基本結構就可以了。一般的大學畢業生都可以了,自學過這2門課程的高中生也夠條件。設備上,一般是建議購買一個仿真器,這樣才可以進行實際的,全面的學習。日后在工作上,仿真器也大有用處。還有,一般光有仿真器是不行,還得有一個實際的電路,即學習板。
標簽: 51單片機C語言
上傳時間: 2013-11-23
上傳用戶:songkun
C8051F單片機 C8051F系列單片機 單片機自20世紀70年代末誕生至今,經歷了單片微型計算機SCM、微控制器MCU及片上系統SoC三大階段,前兩個階段分別以MCS-51和80C51為代表。隨著在嵌入式領域中對單片機的性能和功能要求越來越高,以往的單片機無論是運行速度還是系統集成度等多方面都不能滿足新的設計需要,這時Silicon Labs 公司推出了C8051F系列單片機,成為SoC的典型代表。 C8051F具有上手快(全兼容8051指令集)、研發快(開發工具易用,可縮短研發周期)和見效快(調試手段靈活)的特點,其性能優勢具體體現在以下方面: 基于增強的CIP-51內核,其指令集與MCS-51完全兼容,具有標準8051的組織架構,可以使用標準的803x/805x匯編器和編譯器進行軟件開發。CIP-51采用流水線結構,70%的的指令執行時間為1或2個系統時鐘周期,是標準8051指令執行速度的12倍;其峰值執行速度可達100MIPS(C8051F120等),是目前世界上速度最快的8位單片機。 增加了中斷源。標準的8051只有7個中斷源Silicon Labs 公司 C8051F系列單片機擴展了中斷處理這對于時實多任務系統的處理是很重要的擴展的中斷系統向CIP-51提供22個中斷源允許大量的模擬和數字外設中斷一個中斷處理需要較少的CPU干預卻有更高的執行效率。 集成了豐富的模擬資源,絕大部分的C8051F系列單片機都集成了單個或兩個ADC,在片內模擬開關的作用下可實現對多路模擬信號的采集轉換;片內ADC的采樣精度最高可達24bit,采樣速率最高可達500ksps,部分型號還集成了單個或兩個獨立的高分辨率DAC,可滿足絕大多數混合信號系統的應用并實現與模擬電子系統的無縫接口;片內溫度傳感器則可以迅速而精確的監測環境溫度并通過程序作出相應處理,提高了系統運行的可靠性。 集成了豐富的外部設備接口。具有兩路UART和最多可達5個定時器及6個PCA模塊,此外還根據不同的需要集成了SMBus、SPI、USB、CAN、LIN等接口,以及RTC部件。外設接口在不使用時可以分別禁止以降低系統功耗。與其他類型的單片機實現相同的功能需要多個芯片的組合才能完成相比,C8051單片機不僅減少了系統成本,更大大降低了功耗。 增強了在信號處理方面的性能,部分型號具有16x16 MAC以及DMA功能,可對所采集信號進行實時有效的算法處理并提高了數據傳送能力。 具有獨立的片內時鐘源(精度最高可達0.5%),設計人員既可選擇外接時鐘,也可直接應用片內時鐘,同時可以在內外時鐘源之間自如切換。片內時鐘源降低了系統設計的復雜度,提高了系統可靠性,而時鐘切換功能則有利于系統整體功耗的降低。 提供空閑模式及停機模式等多種電源管理方式來降低系統功耗 實現了I/O從固定方式到交叉開關配置。固定方式的I/O端口,既占用引腳多,配置又不夠靈活。在C8051F中,則采用開關網絡以硬件方式實現I/O端口的靈活配置,外設電路單元通過相應的配置寄存器控制的交叉開關配置到所選擇的端口上。 復位方式多樣化,C8051F把80C51單一的外部復位發展成多源復位,提供了上電復位、掉電復位、外部引腳復位、軟件復位、時鐘檢測復位、比較器0復位、WDT復位和引腳配置復位。眾多的復位源為保障系統的安全、操作的靈活性以及零功耗系統設計帶來極大的好處。 從傳統的仿真調試到基于JTAG接口的在系統調試。C8051F在8位單片機中率先配置了標準的JTAG接口(IEEE1149.1)。C8051F的JTAG接口不僅支持Flash ROM的讀/寫操作及非侵入式在系統調試,它的JTAG邏輯還為在系統測試提供邊界掃描功能。通過邊界寄存器的編程控制,可對所有器件引腳、SFR總線和I/O口弱上拉功能實現觀察和控制。 C8051F系列單片機型號齊全,可根據設計需求選擇不同規模和帶有特定外設接口的型號,提供從多達100個引腳的高性能單片機到最小3mmX3mm的封裝,滿足不同設計的需要。 基于上述特點,Silicon Labs 公司C8051F系列單片機作為SoC芯片的杰出代表能夠滿足絕大部分場合的復雜功能要求,并在嵌入式領域的各個場合都得到了廣泛的應用:在工業控制領域,其豐富的模擬資源可用于工業現場多種物理量的監測、分析及控制和顯示;在便攜式儀器領域,其低功耗和強大的外設接口也非常適合各種信號的采集、存儲和傳輸;此外,新型的C8051F5xx系列單片機也在汽車電子行業中嶄露頭角。正是這些優勢,使得C8051單片機在進入中國市場的短短幾年內就迅速風靡,相信隨著新型號的不斷推出以及推廣力度的不斷加大,C8051系列單片機將迎來日益廣闊的發展空間,成為嵌入式領域的時代寵兒 此系列單片機完全兼容MCS-51指令集,容易上手,開發周期短,大大節約了開發成本。C8051F系統集成度高,總線時鐘可達25M
上傳時間: 2013-11-24
上傳用戶:testAPP
單片機原理及應用實驗指導書 第一部分 系統介紹一、系統的特點EL 型微機教學實驗系統旨在提高實驗者的動手能力、分析解決問題的能力,系統具有以下特點:1、系統采用了模塊化設計,實驗系統功能齊全,涵蓋了微處理器教學實驗課程的大部分內容。2、系統采用了開放式的結構設計,通二組相對獨立的總線最多可同時擴展二塊應用實驗板,用戶可根據需要購置相應的實驗板,降低了成本,提高了靈活性,便于升級換代。3、配有兩塊可編程器件EPM7064/ATF1502,一塊被系統占用。另一塊供用戶實驗用。兩塊器件皆可通過JTAG 接口在線編程。使用十分方便。4、系統配有LED 數碼管顯示和點陣式液晶顯示模塊,二者的接口都對用戶開放,方便用戶靈活使用。5、系統配有完善的輸入鍵盤,方便用戶靈活編程。6、靈活的電源接口:配有PC 機電源插座,可有PC 提供電源。另外還配有外接開關電源,提供所需的+5V、±12V,其輸入為220V 的交流電。7、系統的聯機運行模式:配有系統調試軟件,系統調試軟件分為DOC 版和WINDOWS 版兩種,均為中文多窗口界面。調試程序時可以同時打開寄存器窗口、內存窗口、變量窗口、反匯編窗口、波形顯示窗口等等,極大的方便了用戶的程序調試。該軟件集源程序編輯、編譯、鏈接、調試于一體,每項功能均為中衛下拉菜單,簡明易學。經常使用的功能均備有熱鍵,這樣可以提高程序的調試效率。調試軟件不僅支持匯編語言,而且還支持C 語言編輯、編譯調試。8、系統的單機運行模式:系統在沒有與計算機連接的情況下,自動運行在單機模式,在此模式下,用戶可通過鍵盤輸入運行程序(機器碼),和操作指令,同時將輸入信息及操作的結果在LED 數碼管上顯示出來。9、系統的功能齊全,可擴展性(數據總線、地址總線、控制總線為用戶開放)亦能輕松滿足其課程設計、畢業設計使用等。二、系統概述1、微處理器: 8031,它的P1 口、T0、EX0、EX1、RXD、TXD、RD、WR 皆對用戶開放,供用戶使用。2、時鐘頻率:6.0MHz3、存儲器:程序存儲器與數據存儲器統一編址,最多可達64K,板載ROM(監控程序27C256)16K,RAM(程序存儲器6264)8K 供用戶下載實驗程序,可達到32K;RAM(數據存儲器6264)8K 供用戶程序使用,可擴展達32K。(RAM 程序存儲器與數據存儲器不可同時擴展至32K,具體與廠家聯系)。(見圖1-1:存儲器組織圖)。在程序存儲器中:20000H----2FFFFH 為監控程序存儲器區,用戶不可使用,3000H----3FFFH 為用戶數據存儲區。4000H----7FFFH 為實驗程序存儲器區,供用戶下載實驗程序8000H----CF9FH,CFF0H------FFFFH 為用戶CPLD 實驗區段,用戶可在此段空間編程。CFA0H----CFDFH 系統I/O 區,用戶可用但不可更改。
上傳時間: 2013-10-21
上傳用戶:kiklkook
MCS-51單片機引腳功能教學方法: 講授法授課時數: 2學時教學目的1、 掌握MCS-51單片機引腳的功能2、 掌握MCS-51單片機引腳的使用教學重點、難點:MCS-51單片機引腳的使用主要教學內容(提綱):MCS-51單片機引腳及功能講授要點第二章 MCS-51單片機結構原理 單片機硬件結構•內部結構•引腳功能•內存的配置 •CPU時序•I / O接口 §2-1 概述Intel MCS-51 系列單片機三個版本:8031、8051、8751(8位機) (表2-1 P14 程序內存配置)Intel MCS-96系列機:8096 (16位機)除此之外,Motorla公司、Zilog公司、Mcrochip ……相繼推出產品,各系列產品內部功能、單元組成、指令系統不盡相同。Intel公司單片機問世早,系列齊全,兼容性強,所以得到廣泛使用。 51子系列:8031、8051、8751MCS-51系列52子系列:8032、8052 無 有 ROM ROM §2-2 MCS-51單片機內部結構及引腳
上傳時間: 2014-12-19
上傳用戶:debuchangshi
單片機百科知識大全 MCS-51單片機的特點單片機(MICROCONTROLLER,又稱微控制器)是在一塊硅片上集成了各種部件的微型機算計,這些部件包括中央處理器CPU、數據存貯器RAM、程序存貯器ROM、定時器/計數器和多種I/O接口電路。 片內并行接口P0:常用功能(數據/低8位地址)單片機 P1:常用并行端口(8051) P2:常用于地址高8位(A8-A15)P3:常用第二功能(RXD、TXD、INT0、INT1、T0、T1、WR、RD)
上傳時間: 2014-12-27
上傳用戶:wyiman
單片機的選擇和使用 目前單片機滲透到我們生活的各個領域,幾乎很難找到哪個領域沒有單片機的蹤跡。導彈的導航裝置,飛機上各種儀表的控制,計算機的網絡通訊與數據傳輸,工業自動化過程的實時控制和數據處理,廣泛使用的各種智能IC卡,民用豪華轎車的安全保障系統,錄像機、攝像機、全自動洗衣機的控制,以及程控玩具、電子寵物等等,這些都離不開單片機。更不用說自動控制領域的機器人、智能儀表、醫療器械了。因此,單片機的學習、開發與應用將造就一批計算機應用與智能化控制的科學家、工程師。 單片機廣泛應用于儀器儀表、家用電器、醫用設備、航空航天、專用設備的智能化管理及過程控制等領域,大致可分如下幾個范疇: 1.在智能儀器儀表上的應用 單片機具有體積小、功耗低、控制功能強、擴展靈活、微型化和使用方便等優點,廣泛應用于儀器儀表中,結合不同類型的傳感器,可實現諸如電壓、功率、頻率、濕度、溫度、流量、速度、厚度、角度、長度、硬度、元素、壓力等物理量的測量。采用單片機控制使得儀器儀表數字化、智能化、微型化,且功能比起采用電子或數字電路更加強大。例如精密的測量設備(功率計,示波器,各種分析儀)。 2.在工業控制中的應用 用單片機可以構成形式多樣的控制系統、數據采集系統。例如工廠流水線的智能化管理,電梯智能化控制、各種報警系統,與計算機聯網構成二級控制系統等。 3.在家用電器中的應用 可以這樣說,現在的家用電器基本上都采用了單片機控制,從電飯褒、洗衣機、電冰箱、空調機、彩電、其他音響視頻器材、再到電子秤量設備,五花八門,無所不在。 4.在計算機網絡和通信領域中的應用 現代的單片機普遍具備通信接口,可以很方便地與計算機進行數據通信,為在計算機網絡和通信設備間的應用提供了極好的物質條件,現在的通信設備基本上都實現了單片機智能控制,從手機,電話機、小型程控交換機、樓宇自動通信呼叫系統、列車無線通信、再到日常工作中隨處可見的移動電話,集群移動通信,無線電對講機等。 5.單片機在醫用設備領域中的應用 單片機在醫用設備中的用途亦相當廣泛,例如醫用呼吸機,各種分析儀,監護儀,超聲診斷設備及病床呼叫系統等等。 6.在各種大型電器中的模塊化應用 某些專用單片機設計用于實現特定功能,從而在各種電路中進行模塊化應用,而不要求使用人員了解其內部結構。如音樂集成單片機,看似簡單的功能,微縮在純電子芯片中(有別于磁帶機的原理),就需要復雜的類似于計算機的原理。如:音樂信號以數字的形式存于存儲器中(類似于ROM),由微控制器讀出,轉化為模擬音樂電信號(類似于聲卡)。 在大型電路中,這種模塊化應用極大地縮小了體積,簡化了電路,降低了損壞、錯誤率,也方便于更換。 7.單片機在汽車設備領域中的應用 單片機在汽車電子中的應用非常廣泛,例如汽車中的發動機控制器,基于CAN總線的汽車發動機智能電子控制器,GPS導航系統,abs防抱死系統,制動系統等等。 此外,單片機在工商,金融,科研、教育,國防航空航天等領域都有著十分廣泛的用途。
標簽: 單片機
上傳時間: 2013-11-25
上傳用戶:zjf3110
單片機串行口 單片機是一種集成在電路芯片,是采用超大規模集成電路技術把具有數據處理能力的中央處理器CPU隨機存儲器RAM、只讀存儲器ROM、多種I/O口和中斷系統、定時器/計時器等功能(可能還包括顯示驅動電路、脈寬調制電路、模擬多路轉換器、A/D轉換器等電路)集成到一塊硅片上構成的一個小而完善的計算機系統。
上傳時間: 2014-12-27
上傳用戶:x18010875091
單片機指令系統原理 51單片機的尋址方式 學習匯編程序設計,要先了解CPU的各種尋址法,才能有效的掌握各個命令的用途,尋址法是命令運算碼找操作數的方法。在我們學習的8051單片機中,有6種尋址方法,下面我們將逐一進行分析。 立即尋址 在這種尋址方式中,指令多是雙字節的,一般第一個字節是操作碼,第二個字節是操作數。該操作數直接參與操作,所以又稱立即數,有“#”號表示。立即數就是存放在程序存儲器中的常數,換句話說就是操作數(立即數)是包含在指令字節中的。 例如:MOV A,#3AH這條指令的指令代碼為74H、3AH,是雙字節指令,這條指令的功能是把立即數3AH送入累加器A中。MOV DPTR,#8200H在前面學單片機的專用寄存器時,我們已學過,DPTR是一個16位的寄存器,它由DPH及DPL兩個8位的寄存器組成。這條指令的意思就是把立即數的高8位(即82H)送入DPH寄存器,把立即數的低8位(即00H)送入DPL寄存器。這里也特別說明一下:在80C51單片機的指令系統中,僅有一條指令的操作數是16位的立即數,其功能是向地址指針DPTR傳送16位的地址,即把立即數的高8位送入DPH,低8位送入DPL。 直接尋址 直接尋址方式是指在指令中操作數直接以單元地址的形式給出,也就是在這種尋址方式中,操作數項給出的是參加運算的操作數的地址,而不是操作數。例如:MOV A,30H 這條指令中操作數就在30H單元中,也就是30H是操作數的地址,并非操作數。 在80C51單片機中,直接地址只能用來表示特殊功能寄存器、內部數據存儲器以及位地址空間,具體的說就是:1、內部數據存儲器RAM低128單元。在指令中是以直接單元地址形式給出。我們知道低128單元的地址是00H-7FH。在指令中直接以單元地址形式給出這句話的意思就是這0-127共128位的任何一位,例如0位是以00H這個單元地址形式給出、1位就是以01H單元地址給出、127位就是以7FH形式給出。2、位尋址區。20H-2FH地址單元。3、特殊功能寄存器。專用寄存器除以單元地址形式給出外,還可以以寄存器符號形式給出。例如下面我們分析的一條指令 MOV IE,#85H 前面的學習我們已知道,中斷允許寄存器IE的地址是80H,那么也就是這條指令可以以MOV IE,#85H 的形式表述,也可以MOV 80H,#85H的形式表述。 關于數據存儲器RAM的內部情況,請查看我們課程的第十二課。 直接尋址是唯一能訪問特殊功能寄存器的尋址方式! 大家來分析下面幾條指令:MOV 65H,A ;將A的內容送入內部RAM的65H單元地址中MOV A,direct ;將直接地址單元的內容送入A中MOV direct,direct;將直接地址單元的內容送直接地址單元MOV IE,#85H ;將立即數85H送入中斷允許寄存器IE 前面我們已學過,數據前面加了“#”的,表示后面的數是立即數(如#85H,就表示85H就是一個立即數),數據前面沒有加“#”號的,就表示后面的是一個地址地址(如,MOV 65H,A這條指令的65H就是一個單元地址)。 寄存器尋址 寄存器尋址的尋址范圍是:1、4個工作寄存器組共有32個通用寄存器,但在指令中只能使用當前寄存器組(工作寄存器組的選擇在前面專用寄存器的學習中,我們已知道,是由程序狀態字PSW中的RS1和RS0來確定的),因此在使用前常需要通過對PSW中的RS1、RS0位的狀態設置,來進行對當前工作寄存器組的選擇。2、部份專用寄存器。例如,累加器A、通用寄存器B、地址寄存器DPTR和進位位CY。 寄存器尋址方式是指操作數在寄存器中,因此指定了寄存器名稱就能得到操作數。例如:MOV A,R0這條指令的意思是把寄存器R0的內容傳送到累加器A中,操作數就在R0中。INC R3這條指令的意思是把寄存器R3中的內容加1 從前面的學習中我產應可以理解到,其實寄存器尋址方式就是對由PSW程序狀態字確定的工作寄存器組的R0-R7進行讀/寫操作。 寄存器間接尋址 寄存間接尋址方式是指寄存器中存放的是操作數的地址,即操作數是通過寄存器間接得到的,因此稱為寄存器間接尋址。 MCS-51單片機規定工作寄存器的R0、R1做為間接尋址寄存器。用于尋址內部或外部數據存儲器的256個單元。為什么會是256個單元呢?我們知道,R0或者R1都是一個8位的寄存器,所以它的尋址空間就是2的八次方=256。例:MOV R0,#30H ;將值30H加載到R0中 MOV A,@R0 ;把內部RAM地址30H內的值放到累加器A中 MOVX A,@R0 ;把外部RAM地址30H內的值放到累加器A中 大家想想,如果用DPTR做為間址寄存器,那么它的尋址范圍是多少呢?DPTR是一個16位的寄存器,所以它的尋址范圍就是2的十六次方=65536=64K。因用DPTR做為間址寄存器的尋址空間是64K,所以訪問片外數據存儲器時,我們通常就用DPTR做為間址寄存器。例:MOV DPTR,#1234H ;將DPTR值設為1234H(16位) MOVX A,@DPTR ;將外部RAM或I/O地址1234H內的值放到累加器A中 在執行PUSH(壓棧)和POP(出棧)指令時,采用堆棧指針SP作寄存器間接尋址。例:PUSH 30H ;把內部RAM地址30H內的值放到堆棧區中堆棧區是由SP寄存器指定的,如果執行上面這條命令前,SP為60H,命令執行后會把內部RAM地址30H內的值放到RAM的61H內。 那么做為寄存器間接尋址用的寄存器主要有哪些呢?我們前面提到的有四個,R0、R1、DPTR、SP 寄存器間接尋址范圍總結:1、內部RAM低128單元。對內部RAM低128單元的間接尋址,應使用R0或R1作間址寄存器,其通用形式為@Ri(i=0或1)。 2、外部RAM 64KB。對外部RAM64KB的間接尋址,應使用@DPTR作間址尋址寄存器,其形式為:@DPTR。例如MOVX A,@DPTR;其功能是把DPTR指定的外部RAM的單元的內容送入累加器A中。外部RAM的低256單元是一個特殊的尋址區,除可以用DPTR作間址寄存器尋址外,還可以用R0或R1作間址寄存器尋址。例如MOVX A,@R0;這條指令的意思是,把R0指定的外部RAM單元的內容送入累加器A。 堆棧操作指令(PUSH和POP)也應算作是寄存器間接尋址,即以堆棧指針SP作間址寄存器的間接尋址方式。 寄存器間接尋址方式不可以訪問特殊功能寄存器!! 寄存器間接尋址也須以寄存器符號的形式表示,為了區別寄存器尋址我寄存器間接尋址的區別,在寄存器間接尋址方式式中,寄存器的名稱前面加前綴標志“@”。 基址寄存器加變址寄存器的變址尋址 這種尋址方式以程序計數器PC或DPTR為基址寄存器,累加器A為變址寄存器,變址尋址時,把兩者的內容相加,所得到的結果作為操作數的地址。這種方式常用于訪問程序存儲器ROM中的數據表格,即查表操作。變址尋址只能讀出程序內存入的值,而不能寫入,也就是說變址尋址這種方式只能對程序存儲器進行尋址,或者說它是專門針對程序存儲器的尋址方式。例:MOVC A,@A+DPTR這條指令的功能是把DPTR和A的內容相加,再把所得到的程序存儲器地址單元的內容送A假若指令執行前A=54H,DPTR=3F21H,則這條指令變址尋址形成的操作數地址就是54H+3F21H=3F75H。如果3F75H單元中的內容是7FH,則執行這條指令后,累加器A中的內容就是7FH。 變址尋址的指令只有三條,分別如下:JMP @A+DPTRMOVC A,@A+DPTRMOVC A,@A+PC 第一條指令JMP @A+DPTR這是一條無條件轉移指令,這條指令的意思就是DPTR加上累加器A的內容做為一個16位的地址,執行JMP這條指令是,程序就轉移到A+DPTR指定的地址去執行。 第二、三條指令MOVC A,@A+DPTR和MOVC A,@A+PC指令這兩條指令的通常用于查表操作,功能完全一樣,但使用起來卻有一定的差別,現詳細說明如下。我們知道,PC是程序指針,是十六位的。DPTR是一個16位的數據指針寄存器,按理,它們的尋址范圍都應是64K。我們在學習特殊功能寄存器時已知道,程序計數器PC是始終跟蹤著程序的執行的。也就是說,PC的值是隨程序的執行情況自動改變的,我們不可以隨便的給PC賦值。而DPTR是一個數據指針,我們就可以給空上數據指針DPTR進行賦值。我們再看指令MOVC A,@A+PC這條指令的意思是將PC的值與累加器A的值相加作為一個地址,而PC是固定的,累加器A是一個8位的寄存器,它的尋址范圍是256個地址單元。講到這里,大家應可明白,MOVC A,@A+PC這條指令的尋址范圍其實就是只能在當前指令下256個地址單元。所在,這在我們實際應用中,可能就會有一個問題,如果我們需要查詢的數據表在256個地址單元之內,則可以用MOVC A,@A+PC這條指令進行查表操作,如果超過了256個單元,則不能用這條指令進行查表操作。剛才我們已說到,DPTR是一個數據指針,這個數據指針我們可以給它賦值操作的。通過賦值操作。我們可以使MOVC A,@A+DPTR這條指令的尋址范圍達到64K。這就是這兩條指令在實際應用當中要注意的問題。 變址尋址方式是MCS-51單片機所獨有的一種尋址方式。 位尋址 80C51單片機有位處理功能,可以對數據位進行操作,因此就有相應的位尋址方式。所謂位尋址,就是對內部RAM或可位尋址的特殊功能寄存器SFR內的某個位,直接加以置位為1或復位為0。 位尋址的范圍,也就是哪些部份可以進行位尋址: 1、我們在第十二課學習51單片機的存儲器結構時,我們已知道在單片機的內部數據存儲器RAM的低128單元中有一個區域叫位尋址區。它的單元地址是20H-2FH。共有16個單元,一個單元是8位,所以位尋址區共有128位。這128位都單獨有一個位地址,其位地址的名字就是00H-7FH。這里就有一個比較麻煩的問題需要大家理解清楚了。我們在前面的學習中00H、01H。。。。7FH等等,所表示的都是一個字節(或者叫單元地址),而在這里,這些數據都變成了位地址。我們在指令中,或者在程序中如何來區分它是一個單元地址還是一個位地址呢?這個問題,也就是我們現在正在研究的位尋址的一個重要問題。其實,區分這些數據是位地址還是單元地址,我們都有相應的指令形式的。這個問題我們在后面的指令系統學習中再加以論述。 2、對專用寄存器位尋址。這里要說明一下,不是所有的專用寄存器都可以位尋址的。具體哪些專用寄存器可以哪些專用寄存器不可以,請大家回頭去看看我們前面關于專用寄存器的相關文章。一般來說,地址單元可以被8整除的專用寄存器,通常都可以進行位尋址,當然并不是全部,大家在應用當中應引起注意。 專用寄存器的位尋址表示方法: 下面我們以程序狀態字PSW來進行說明 D7 D6 D5 D4 D3 D2 D1 D0 CY AC F0 RS1 RS0 OV P 1、直接使用位地址表示:看上表,PSW的第五位地址是D5,所以可以表示為D5H MOV C,D5H 2、位名稱表示:表示該位的名稱,例如PSW的位5是F0,所以可以用F0表示 MOV C,F0 3、單元(字節)地址加位表示:D0H單元位5,表示為DOH.5 MOV C,D0H.5 4、專用寄存器符號加位表示:例如PSW.5 MOV C,PSW.5 這四種方法實現的功能都是相同的,只是表述的方式不同而已。 例題: 1. 說明下列指令中源操作數采用的尋址方式。 MOV R5,R7 答案:寄存器尋址方式 MOV A,55H 直接尋址方式 MOV A,#55H 立即尋址方式 JMP @A+DPTR 變址尋址方式 MOV 30H,C 位尋址方式 MOV A,@R0 間接尋址方式 MOVX A,@R0 間接尋址方式 改錯題 請判斷下列的MCS-51單片機指令的書寫格式是否有錯,若有,請說明錯誤原因。 MOV R0,@R3 答案:間址寄存器不能使用R2~R7。 MOVC A,@R0+DPTR 變址尋址方式中的間址寄存器不可使用R0,只可使用A。 ADD R0,R1 運算指令中目的操作數必須為累加器A,不可為R0。 MUL AR0 乘法指令中的乘數應在B寄存器中,即乘法指令只可使用AB寄存器組合。
上傳時間: 2013-11-11
上傳用戶:caozhizhi
HT MCU 大型表格的讀取在單片機的使用過程中,我們經常會用到查表指令。HOLTEK 公司生產的8 位單片機有兩條查表指令,分別是TABRDC 和TABRDL,TABRDC 用來查當前頁表格內容,TABRDL 用來查最后一頁的表格內容。但是這兩條指令最多只能讀取一頁的表格內容(一頁為256 個字)。這就使得查取大容量的表格變得復雜,例如,在聲音處理和LCD 顯示中經常用到查表操作,且表格內容往往大于256個字。本文將介紹一個查表程序—TABRD,專門用來查取大容量表格的內容,其最大可查取32512(7F00H)的表格內容。這個子程序可以應用到許多地方。但是一旦ROM 超過8K 的話(例如HTG21系列,HT48XA3 等等),就可以使用TBHP 和TBLP 這兩個查表指針直接訪問ROM 內任何地址的表格數據了。因此,TABRD 程序適用于ROM<8K 的MCU 程序。
上傳時間: 2013-11-02
上傳用戶:lixinxiang