As we enter the next millennium, there are clear technological patterns. First, the
electronic industry continues to scale microelectronic structures to achieve faster
devices, new devices, or more per unit area. Secondly, electrostatic charge, electrostatic
discharge (ESD), electrical overstress (EOS) and electromagnetic emissions (EMI)
continue to be a threat to these scaled structures. This dichotomy presents a dilemma
for the scaling of semiconductor technologies and a future threat to new technologies.
Technological advancements, material changes, design techniques, and simulation can
fend off this growing concern – but to maintain this ever-threatening challenge, one must
continue to establish research and education in this issue.
Electrostatic discharge (ESD) phenomena have been known to mankind since the Greek
Empire when Thales of Miletus, one of the Seven Sages of Greece, noticed the attraction of
strands of hay to amber, leading to the coining of the word ‘‘electron.’’ In the 17th century,
Gilbert and Cabeo addressed the attractive and repulsive nature of electricity. In the 18th
century, a rapid increase of interest occurred for scientists in the understanding of electrical
physics—Gray, du Fay, Nollet, Musschenbroeck, Franklin, Watson, Aepinus, Canton,
Electrostatic discharge (ESD) phenomena have been known to mankind since Thales of
Miletus in approximately 600 B.C.E. noticed the attraction of strands of hay to amber.
Two thousand six hundred years have passed and the quest to obtain a better under-
standing of electrostatics and ESD phenomenon continues. Today, the manufacturing
of microelectronics has continued the interest in the field of electrostatic phenomenon
spanning factory issues, tooling, materials, and the microelectronic industry
Electrostatic discharge (ESD) phenomena have been known to mankind since the Greek
Empire when Thales of Miletus, one of the Seven Sages of Greece, noticed the attraction of
strands of hay to amber, leading to the coining of the word “electron.” Electrical discharge
and the guiding of electrical discharge (e.g., lightning) was of interest to Benjamin Franklin
in the 1700s, with the invention of the lightning rod. The lightning rod was mankind’s first
effort to guide the electrical discharge current of a lightning strike in a direction that would
not harm structures.
What you always wanted to know about networking but were afraid to ask!
* How networks and the Internet work
* How to build coherent, cost-effective network infrastructures
* How to design networks for maximum reliability and availability
* What you need to know about data center and application networking
* How to secure networks against today?s threats and attacks
* How to take advantage of the latest mobility technologies
* How virtualizing networks can help businesses leverage their network investments even further
* How to combine messaging, calendaring, telephony, audio, video, and web conferencing into a unified communications architecture
The TapiComm sample uses both the Telephony API and the Win32 Communications API to demonstrate one way to implement a very simple TTY application. While the user interface and TTY emulation are very rudimentary, the TAPI and comm modules are fairly complete.