This a simple bootloader for AT91SAM7{S,X}{64,128,256} processors. It
permits you to download new code to the device over USB. This bootrom is
installed at address 0x00000000 in the ARM, which means that it is the
first piece of code to Execute after reset. At startup, it waits for
a few seconds to see if the downloader is trying to connect. If not,
then the bootloader gives up control and jumps to your program. If the
downloader is trying to connect, then the bootloader receives the new
program over USB and writes it into flash.
UC Library Extensions
UnderC comes with a pocket implementation of the standard C++ libraries, which is a reasonably faithful subset. This documentation describes those UnderC functions and classes which are not part of the C++ standard.
UC Library
Builtin functions:
Most of these are standard C functions, but there are a few unique to the UnderC system which give you runtime access to the compiler. You may evaluate expressions, Execute commands, compile code, etc.
* Expands the text in expr using the UnderC preprocessor, putting the result
into buff.
void uc_macro_subst(const char* expr, char* buff, int buffsize)
* Executes a UC #-command, like #l or #help.
uc_cmd() expects the name of the command, _without_ the hash,
e.g. uc_cmd("l fred.cpp") or uc_cmd("help").
void uc_cmd(const char* cmd)
* Evaluates any C++ expression or statement will return non-zero if
unsuccessful.
New users and old of optimization in MATLAB will find useful tips and tricks in this document, as well as examples one can use as templates for their own problems.
Use this tool by editing the file optimtips.m, then Execute blocks of code in cell mode from the editor, or best, publish the file to HTML. Copy and paste also works of course.
Some readers may find this tool valuable if only for the function pleas - a partitioned least squares solver based on lsqnonlin.
This is a work in progress, as I fully expect to add new topics as I think of them or as suggestions are made. Suggestions for topics I ve missed are welcome, as are corrections of my probable numerous errors. The topics currently covered are listed below
看n2實例 #Create a simulator object
set ns [new Simulator]
#Define different colors for data flows
#$ns color 1 Blue
#$ns color 2 Red
#Open the nam trace file
set nf [open out-1.nam w]
$ns namtrace-all $nf
set f0 [open out0.tr w]
set f1 [open out1.tr w]
#Define a finish procedure
proc finish {} {
global ns nf
$ns flush-trace
#Close the trace file
close $nf
#Execute nam on the trace file
exit 0
}
#Create four nodes
set n0 [$ns node]
set n1 [$ns node]
set n2 [$ns node]
set n3 [$ns node]
#Create links between the nodes
$ns duplex-link $n0 $n2 1Mb 10ms