在步進(jìn)電機(jī)驅(qū)動方式中,效果最好的是細(xì)分驅(qū)動,當(dāng)今高端的步進(jìn)電機(jī)驅(qū)動器基本都采用這種技術(shù)。步進(jìn)電機(jī)的細(xì)分驅(qū)動技術(shù)是一門綜合了數(shù)字化技術(shù)、集成控制技術(shù)和計算機(jī)技術(shù)的新技術(shù),被廣泛應(yīng)用于工業(yè)、科研、通訊、天文等領(lǐng)域。 本文設(shè)計了一種基于DSP以及FPGA的兩相混合式步進(jìn)電機(jī)SPWM(正弦脈寬調(diào)制)波細(xì)分驅(qū)動系統(tǒng)。在DSP系統(tǒng)中采用TMS320I.F2407A微控制器作為核心控制器件,用軟件產(chǎn)生SPWM波;在FPGA系統(tǒng)中采用FPGA芯片,通過VerilogHDL語言,實現(xiàn)了SPWM波;在功率驅(qū)動級電路上采用雙極性H橋的驅(qū)動方式。最終實現(xiàn)了對兩相混合式步進(jìn)電機(jī)SPWM波細(xì)分驅(qū)動,大大提高了步進(jìn)電機(jī)的運轉(zhuǎn)性能。 本文介紹了兩相混合式步進(jìn)電機(jī)的工作原理、控制原理以及細(xì)分驅(qū)動的基本原理。通過對恒轉(zhuǎn)矩細(xì)分驅(qū)動的分析,提出了兩相混合式步進(jìn)電機(jī)SPWM波細(xì)分驅(qū)動的方案,并給出了SPWM波產(chǎn)生的數(shù)學(xué)模型。最后,對步進(jìn)電機(jī)的SPWM波細(xì)分驅(qū)動系統(tǒng)進(jìn)行了實驗測量,給出了實驗結(jié)果。 實驗的結(jié)果表明,設(shè)計的基于DSP與FPGA的SPWM波細(xì)分驅(qū)動系統(tǒng)可以很好地克服電機(jī)低頻振蕩的問題,提高電機(jī)在中、低速運行的性能。電機(jī)的掃描范圍與理論值基本接近;微步距在誤差允許的范圍內(nèi)也基本可以滿足要求。
標(biāo)簽: FPGA DSP 步進(jìn)電機(jī)
上傳時間: 2013-04-24
上傳用戶:WANGLIANPO
TI DSP的發(fā)展同集成電路的發(fā)展一樣,新的DSP都是3.3V的,但目前還有許多外圍電路是5V的,因此在DSP系統(tǒng)中,經(jīng)常有5V和3.3V的DSP混接問題。在這些系統(tǒng)中,應(yīng)注意: 1)DSP輸出給5V
上傳時間: 2013-07-19
上傳用戶:wkchong
建立在數(shù)據(jù)率轉(zhuǎn)換技術(shù)之上的寬帶數(shù)字偵察接收機(jī)要求能夠?qū)崿F(xiàn)高截獲概率、高靈敏度、近乎實時的信號處理能力。雙信號數(shù)據(jù)率轉(zhuǎn)換技術(shù)是寬帶數(shù)字偵察接收機(jī)關(guān)鍵技術(shù)之一,是解決寬帶數(shù)字接收機(jī)中前端高速ADC采樣的高速數(shù)據(jù)流與后端DSP處理速度之間瓶頸問題的可行方案。測頻技術(shù)以及帶通濾波,即寬帶數(shù)字下變頻技術(shù),是實現(xiàn)數(shù)據(jù)率轉(zhuǎn)換系統(tǒng)的關(guān)鍵技術(shù)。本文首先介紹了寬帶數(shù)字偵察接收關(guān)鍵技術(shù)之一的數(shù)據(jù)率轉(zhuǎn)換技術(shù),著重研究了快速、高精度雙信號測頻算法以及實驗系統(tǒng)硬件實現(xiàn)。論文主要工作如下: (1)分析了現(xiàn)代電子偵察環(huán)境下的信號特征,指出寬帶數(shù)字接收機(jī)必須滿足寬監(jiān)視帶寬、流水作業(yè)以及近實時的響應(yīng)時間。給出了一種頻率引導(dǎo)式的數(shù)字接收機(jī)方案,簡要介紹這種接收機(jī)的關(guān)鍵技術(shù)——快速、高精度頻率估計以及高效的數(shù)據(jù)率轉(zhuǎn)換。 (2)介紹了FFT技術(shù)在測頻算法中的應(yīng)用,比較了FFT專用芯片及其優(yōu)點和缺點,指出為了滿足實時處理要求,必須選用FPGA設(shè)計FFT模塊。 (3)在分析常規(guī)的插值算法基礎(chǔ)上,提出了一種單信號的快速插值頻率估計方法,只需三個FFT變換系數(shù)的實部構(gòu)造頻率修正項,計算量低。該方法具有精度高、測頻速率快的特點。 (4)基于DFT理論和自相關(guān)理論,提出了結(jié)合FFT和自相關(guān)的雙信號頻率估計算法。該方法先用DFT估計其中一個信號的頻率和幅度,以此頻率對信號解調(diào)并對消該頻率成分,最后利用自相關(guān)理論估計出另一個信號的頻率。 (5)基于DFT理論和FFT技術(shù),研究了信號平方與FFT結(jié)合的雙信號頻率估計算法。根據(jù)信號中兩頻率分量的幅度比,只需一次一維平方信號譜峰搜索,就可以得到雙信號的和頻與差頻分量的估計值,并利用插值技術(shù)提高測頻精度。該算法能夠精確地估計頻率間隔小的雙信號頻率,且容易地擴(kuò)展到復(fù)信號,F(xiàn)PGA硬件實現(xiàn)容易。 (6)基于現(xiàn)代譜分析理論,研究了基于AR(2)模型的雙信號頻率估計算法。方法在利用AR(2)模型系數(shù)估計雙正弦信號頻率之和的同時,利用FFT快速測頻算法估計其中強(qiáng)信號分量的頻率值。算法仿真驗證和性能分析表明了提出的算法能快速高精度地估計雙信號頻率。 (7)給出了基于頻譜重心算法的雷達(dá)雙信號頻率估計的FPGA硬件實現(xiàn)架構(gòu),并進(jìn)行了時序仿真。 (8)討論了雙信號帶寬匹配接收系統(tǒng)的硬件設(shè)計方案,給出了快速測頻及帶寬估計模塊設(shè)計。
上傳時間: 2013-06-02
上傳用戶:youke111
現(xiàn)代雷達(dá)系統(tǒng)廣泛采用脈沖壓縮技術(shù),用以解決作用距離與分辨能力之間的矛盾。脈沖壓縮是指雷達(dá)通過發(fā)射寬脈沖,保證足夠的最大作用距離,而接收時,采用相應(yīng)的脈沖壓縮法獲得窄脈沖以提高距離分辨率的過程。同時,數(shù)字信號處理技術(shù)的迅猛發(fā)展和廣泛應(yīng)用,為雷達(dá)脈沖壓縮處理的數(shù)字化實現(xiàn)提供了可能。 本文主要研究雷達(dá)多波形頻域數(shù)字脈沖壓縮系統(tǒng)的硬件系統(tǒng)實現(xiàn)。在匹配濾波理論的指導(dǎo)下,成功研制了基于FPGAEP1K100QC208-1和4片高性能ADSP21160M的多波形頻域數(shù)字脈沖壓縮系統(tǒng)。該系統(tǒng)可處理時寬在42μs以內(nèi)、帶寬在5MHz以下的線性調(diào)頻信號(LFM),非線性調(diào)頻信號(NLFM)和Taylor四相碼信號,且技術(shù)指標(biāo)完全滿足實用系統(tǒng)的設(shè)計要求。 本文完成的主要工作和創(chuàng)新之處有:(1)基于雙通道模數(shù)轉(zhuǎn)換器AD10242設(shè)計高精度數(shù)據(jù)采集電路,為整個脈壓系統(tǒng)的工作提供必要的條件。完成了前端模擬信號輸入電路的優(yōu)化和差分輸入時鐘的產(chǎn)生,以實現(xiàn)高精度采樣。 (2)根據(jù)協(xié)議和脈壓系統(tǒng)的工作要求,以基于FPGAEP1K100QC208完成系統(tǒng)控制,使整個脈壓系統(tǒng)正確穩(wěn)定地工作。同時以該FPGA生成雙口RAM,實現(xiàn)數(shù)據(jù)暫存,以匹配采樣速率和脈壓系統(tǒng)頻率。 (3)設(shè)計基于4片高性能ADSP21160M的緊耦合并行處理系統(tǒng),以完成多波形頻域數(shù)字脈沖壓縮的全部運算工作。4片DSP共享外部總線,且各DSP以鏈路口互連,進(jìn)行數(shù)據(jù)通信。各DSP還使用一個鏈路口連接到接口板DSP,將脈壓結(jié)果送出。 (4)以一片ADSP21160M和一片EP1K100QC208為核心,設(shè)計輸出板電路,完成數(shù)據(jù)對齊、求模和數(shù)據(jù)向下一級的輸出,并產(chǎn)生模擬輸出。 (5)調(diào)試并改進(jìn)處理板和輸出板。
標(biāo)簽: FPGA DSP 多波形 壓縮系統(tǒng)
上傳時間: 2013-06-11
上傳用戶:qq277541717
快速傅立葉變換(FFT)是數(shù)字信號處理中的重要內(nèi)容之一,是很多信號處理過程中的核心算法。本文先總結(jié)了快速傅立葉變換的一些常用算法,并綜合種種因素,采用了基2按頻率抽取算法作為實現(xiàn)算法,然后將以現(xiàn)場可編程門陣列(FPGA)和以DSP處理器這兩種實現(xiàn)數(shù)字信號處理的方式進(jìn)行了比較,指出了各自的優(yōu)點和不足之處。最后以FPGA芯片XCS200為硬件平臺,以ISE6為軟件平臺,利用VHDL語言描述的方式實現(xiàn)了512點16Bit復(fù)數(shù)的快速傅立葉變換系統(tǒng),并進(jìn)行了仿真、綜合等工作。仿真結(jié)果表明其計算結(jié)果達(dá)到了一定的精度,運行速度可以滿足一般實時信號處理的要求。
標(biāo)簽: FPGA 傅立葉 變換實現(xiàn)
上傳時間: 2013-06-08
上傳用戶:cylnpy
本課題設(shè)計和完成了一套基于DSP+FPGA結(jié)構(gòu)的小波變換實時圖像處理系統(tǒng)。采用小波算法對圖像進(jìn)行邊緣提取、圖像增強(qiáng)、圖像融合等處理,并在ADSP-BF535上實現(xiàn)了小波算法,分析了其運行小波算法的性能。圖像處理的數(shù)據(jù)量比較大,而且運算比較復(fù)雜,DSP的特殊結(jié)構(gòu)和性能很好地滿足了系統(tǒng)實現(xiàn)的需要,而FPGA的高速性和靈活性也滿足了系統(tǒng)實時性和穩(wěn)定性的需要,所以采用DSP+FPGA來實現(xiàn)圖像處理系統(tǒng)是可靠的,也是可行的。系統(tǒng)的硬件設(shè)計以DSP和FPGA為平臺,DSP實現(xiàn)算法、管理系統(tǒng)運行、并實現(xiàn)了系統(tǒng)的自啟動;FPGA實現(xiàn)一些接口、時序控制等,簡化了外圍電路,提高了系統(tǒng)的可靠性。結(jié)果表明,在ADSP-BF535上實現(xiàn)小波算法,效果良好,而且滿足系統(tǒng)實時性的要求。最后,總結(jié)了系統(tǒng)的設(shè)計和調(diào)試經(jīng)驗,對調(diào)試時遇到的一些問題進(jìn)行了分析。
上傳時間: 2013-04-24
上傳用戶:Kecpolo
在測井過程中,由于測井深度直接影響到其它測井信息的準(zhǔn)確性,所以精確的測井深度變得越來越重要。本文針對現(xiàn)有絞車系統(tǒng)的不足(CPU為單片機(jī)決定其精度不高、缺少完善的深度校正系統(tǒng)等),首次將DSP與FPGA應(yīng)用到測井絞車系統(tǒng)中,充分利用FPGA硬件資源豐富、速度快及DSP軟件設(shè)計靈活的特點,使系統(tǒng)硬件、軟件結(jié)構(gòu)更加合理,功能得到增強(qiáng),性價比進(jìn)一步提高,從而優(yōu)化了整個系統(tǒng),為今后絞車設(shè)計提供了新的方法和途徑。 本文相對其它絞車系統(tǒng)的設(shè)計,主要特點有:設(shè)計了比較完善的深度校正模塊(深度脈沖校正、根據(jù)磁記號與磁定位信號的校正、由張力等原因引起的電纜形變的校正)。將打標(biāo)和測量一體化。設(shè)計了方便的通信接口(校正后的深度脈沖及DSP通過RS232與主測井儀的通信)。使用DSP作為CPU并且配合FPGA作預(yù)處理從而提高了測量深度的準(zhǔn)確性。電路采用了可編程邏輯器件,提高了電路工作的可靠性,減小了電路板面積。另外,本文在研究電纜絞車系統(tǒng)的同時,對測井的地面信號處理也進(jìn)行了初步的研究,主要是對趨膚效應(yīng)的校正做了初步的研究。 本文所完成的是一個完整的測量與打標(biāo)系統(tǒng),通過室內(nèi)與現(xiàn)場實驗,得出該系統(tǒng)具有高精度、高智能化等優(yōu)點。最后,本文對該系統(tǒng)的發(fā)展方向作了展望。
標(biāo)簽: FPGA DSP 絞車 系統(tǒng)研究
上傳時間: 2013-07-08
上傳用戶:星仔
本文主要研究基于FPGA的高速流水線工作方式的FFT實現(xiàn)。圍繞這個目標(biāo)利用Xilinx公司VIRTEX_Ⅱ系列FPGA,及其提供的ISE設(shè)計工具、modelsim仿真工具、Synplify綜合工具及MATLAB,完成了流水線工作方式的FFT中基于每一階運算單元的高效復(fù)數(shù)乘法器的設(shè)計、各階控制單元的設(shè)計、數(shù)據(jù)存儲器的設(shè)計,從而完成1024點流水線工作方式的FFT,達(dá)到工作在50MHZ時鐘頻率的設(shè)計要求。
上傳時間: 2013-04-24
上傳用戶:KSLYZ
在機(jī)器人學(xué)的研究領(lǐng)域中,如何有效地提高機(jī)器人控制系統(tǒng)的控制性能始終是研究學(xué)者十分關(guān)注的一個重要內(nèi)容。在分析了工業(yè)機(jī)器人的發(fā)展歷程和機(jī)器人控制系統(tǒng)的研究現(xiàn)狀后,本論文的主要目標(biāo)是針對四關(guān)節(jié)實驗室機(jī)器人特有的機(jī)械結(jié)構(gòu)和數(shù)學(xué)模型,建立一個新型全數(shù)字的基于DSP和FPGA的機(jī)器人位置伺服控制系統(tǒng)的軟、硬件平臺,實現(xiàn)對四關(guān)節(jié)實驗室機(jī)器人的精確控制。 本論文從實際情況出發(fā),首先分析了所研究的四關(guān)節(jié)實驗室機(jī)器人的本體結(jié)構(gòu),并對其抽象簡化得到了它的運動學(xué)數(shù)學(xué)模型。在明確了實現(xiàn)機(jī)器人精確位置伺服控制的控制原理后,我們對機(jī)器人控制系統(tǒng)的諸多可行性方案進(jìn)行了充分論證,并最終決定采用了三級CPU控制的控制體系結(jié)構(gòu):第一級CPU為上位計算機(jī),它實現(xiàn)對機(jī)器人的系統(tǒng)管理、協(xié)調(diào)控制以及完成機(jī)器人實時軌跡規(guī)劃等控制算法的運算;第二級CPU為高性能的DSP處理器,它輔之以具有高速并行處理能力的FPGA芯片,實現(xiàn)了對機(jī)器人多個關(guān)節(jié)的高速并行驅(qū)動;第三級CPU為交流伺服驅(qū)動處理器,它實現(xiàn)了機(jī)器人關(guān)節(jié)伺服電機(jī)的精確三閉環(huán)誤差驅(qū)動控制,以及電機(jī)的故障診斷和自動保護(hù)等功能。此外,我們采用比普通UART速度快得多的USB來實現(xiàn)上位計算機(jī).與下位控制器之間的數(shù)據(jù)通信,這樣既保證了兩者之間連接方便,又有效的提高了控制系統(tǒng)的通信速度和可靠性。 機(jī)器人系統(tǒng)的軟件設(shè)計包括兩個部分:一是采用VC++實現(xiàn)的上位監(jiān)控軟件系統(tǒng),它主要負(fù)責(zé)機(jī)器人實時軌跡規(guī)劃等控制算法的運算,同時完成用戶與機(jī)器人系統(tǒng)之間的信息交互;二是采用C語言實現(xiàn)的下位DSP控制程序,它主要負(fù)責(zé)接收上位監(jiān)控系統(tǒng)或者下位控制箱發(fā)送的控制信號,實現(xiàn)對機(jī)器人的實時驅(qū)動,同時還能夠?qū)崟r的向上位監(jiān)控系統(tǒng)或者下位控制箱反饋機(jī)器人的當(dāng)前狀態(tài)信息。 研究開發(fā)出來的四關(guān)節(jié)實驗室機(jī)器人控制器具有控制實時性好、定位精度高、運行穩(wěn)定可靠的特點,它允許用戶通過上位控制計算機(jī)實現(xiàn)對機(jī)器人的各種設(shè)定作業(yè)的控制,也可以讓用戶通過機(jī)器人控制箱現(xiàn)場對機(jī)器人進(jìn)行回零、示教等各項操作。
標(biāo)簽: FPGA DSP 實驗室 機(jī)器人控制器
上傳時間: 2013-06-11
上傳用戶:edisonfather
TMS320LF240x DSP C語言開發(fā)應(yīng)用,其中有svpwm控制變頻器程序
上傳時間: 2013-04-24
上傳用戶:xoxoliguozhi
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1