s平面中直接形式到級聯形式的轉換 %適合模擬濾波器的 %C為增益系數 %B為包含各bk的K乘3維實系數矩陣 %A為包含各ak的K乘3維實系數矩陣 %b為直接形式的分子多項式系數 %a為直接形式的分母多項式系數
上傳時間: 2015-07-22
上傳用戶:sdq_123
%直接型到并聯型的轉換 % %[C,B,A]=dir2par(b,a) %C為當b的長度大于a時的多項式部分 %B為包含各bk的K乘2維實系數矩陣 %A為包含各ak的K乘3維實系數矩陣 %b為直接型分子多項式系數 %a為直接型分母多項式系數 %
上傳時間: 2014-01-20
上傳用戶:lizhen9880
拉格朗日插值多項式擬合,牛頓插值多項式,歐拉方程解偏微分方程,使用極限微分求解導數(微分),微分方程組的N=4龍格庫塔解法,雅可比爹迭代法解方程AX=B,最小二乘多項式擬合,組合辛普生公式求解積分,用三角分解法解方程AX=B
上傳時間: 2015-07-23
上傳用戶:hongmo
直接型到級聯型的形式轉換 % [b0,B,A]=dir2cas(b,a) %b 為直接型的分子多項式系數 %a 為直接型的分母多項式系數 %b0為增益系數 %B 為包含各bk的K乘3維實系數矩陣 %A 為包含各ak的K乘3維實系數矩陣 %
上傳時間: 2013-12-30
上傳用戶:agent
Thinking in C++ 2nd edition source code which are all the cores of the book Thinking in C++ second edition.that s the best thing to learn C
標簽: Thinking the edition source
上傳時間: 2013-12-17
上傳用戶:fandeshun
有關B-樹的刪除添加修改操作
上傳時間: 2014-11-26
上傳用戶:llandlu
光學設計軟件zemax源碼: This DLL models an nular aspheric surface as described in: "Annular surfaces in annular field systems" By Jose M. Sasian Opt. eng. 36 (12) P 3401-3401 December 1997 This surface is essentially an odd aspheric surface with an offset in the aspheric terms. The sag is given by: Z = (c*r*r) / (1+(1-((1+k)*c*c*r*r))^ 1/2 ) + a*(r-q)^2 + b*(r-q)^3 + c*(r-q)^4 + ... Note the terms a, b, c, ... have units of length to the -1, -2, -3, ... power.
標簽: described aspheric surfaces Annular
上傳時間: 2014-01-08
上傳用戶:yyyyyyyyyy
四選一選擇器,輸入四個,輸出1個.當NM=00時選A 當NM=01時選B 當NM=10時選C 當NM=11時選D
上傳時間: 2013-12-25
上傳用戶:woshiayin
The Linux kernel is one of the most interesting yet least understood open-source projects. It is also a basis for developing new kernel code. That is why Sams is excited to bring you the latest Linux kernel development information from a Novell insider in the second edition of Linux Kernel Development. This authoritative, practical guide will help you better understand the Linux kernel through updated coverage of all the major subsystems, new features associated with Linux 2.6 kernel and insider information on not-yet-released developments. You ll be able to take an in-depth look at Linux kernel from both a theoretical and an applied perspective as you cover a wide range of topics, including algorithms, system call interface, paging strategies and kernel synchronization. Get the top information right from the source in Linux Kernel Development.
標簽: interesting open-source understood projects
上傳時間: 2015-07-26
上傳用戶:mpquest
實現一個B*Tree的添加和查找,輸入數據為一組字典文件
標簽: Tree
上傳時間: 2014-01-14
上傳用戶:我干你啊