FP + OOP = Haskell. The programming language Haskell adds object-oriented functionality (using a concept
known as
type classes
) to a pure functional programming FrameWork. This paper describes
these extensions and analyzes its accomplishments as well as some problems.
32feet.NET is a shared-source project to make personal area networking technologies such as Bluetooth, Infrared (IrDA) and more, easily accessible from .NET code. Supports desktop, mobile or embedded systems. 32feet.NET is free for commercial or non-commercial use. If you use the binaries you can just use the library as-is, if you make modifications to the source you need to include the 32feet.NET License.txt document and ensure the file headers are not modified/removed. The project currently consists of the following libraries:-
Bluetooth
IrDA
Object Exchange
Bluetooth support requires a device with either the Microsoft, Widcomm, BlueSoleil, or Stonestreet One Bluetopia Bluetooth stack. Requires .NET Compact FrameWork v3.5 or above and Windows CE.NET 4.2 or above, or .NET FrameWork v3.5 for desktop Windows XP, Vista, 7 and 8. A subset of functionality is available for Windows Phone 8 and Windows Embedded Handheld 8 in the InTheHand.Phone.Bluetooth.dll library.
Lithium–sulfur batteries are a promising energy-storage technology due to their relatively low cost and high theoretical energy density. However, one of their major technical problems is the shuttling of soluble polysulfides between electrodes, resulting in rapid capacity fading. Here, we present a metal–organic FrameWork (MOF)-based battery separator to mitigate the shuttling problem. We show that the MOF-based separator acts as an ionic sieve in lithium–sulfur batteries, which selectively sieves Li+ ions while e ciently suppressing undesired polysulfides migrating to the anode side. When a sulfur-containing mesoporous carbon material (approximately 70 wt% sulfur content) is used as a cathode composite without elaborate synthesis or surface modification, a lithium–sulfur battery with a MOF-based separator exhibits a low capacity decay rate (0.019% per cycle over 1,500 cycles). Moreover, there is almost no capacity fading after the initial 100 cycles. Our approach demonstrates the potential for MOF-based materials as separators for energy-storage applications.
This thesis is about wireless communication in shared radio spectrum. Its origin and
motivation is ideally represented by the two quotations from above. In this thesis, the
support of Quality-of-Service (QoS) in cognitive radio networks is analyzed. New
approaches to distributed coordination of cognitive radios are developed in different
spectrum sharing scenarios. The Wireless Local Area Network (WLAN) 802.11 proto-
col of the Institute of Electrical and Electronics Engineers (IEEE) (IEEE, 2003) with
its enhancement for QoS support (IEEE, 2005d) is taken as basis. The Medium Access
Control (MAC) of 801.11(e) is modified to realize flexible and dynamic spectrum
assignment within a liberalized regulation FrameWork.
European Research FrameWork programs are public policy instruments designed
to strengthen European competitiveness through cooperation. Although they have
a fixed time frame, determined research themes, and a specific expected impact,
the achievements in research and development (R&D) made by these funded proj-
ects pave the way for a research continuum.
European Research FrameWork Programs are a public policy instrument to
strengthen European competitiveness through cooperation. Although they have a
fixed timeframe, determined research themes, and specific expected impact, the
achievements in research and development (R&D) made by the funded projects
pave the way for a research continuum.