亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

G-SDI

  • 基于ARM嵌入式平臺的RFID閱讀器設計.pdf

    射頻識別技術(RFID,RadioFrequencyIdentification)是目前自動識別技術發展的趨勢所在,更被譽為21世紀最重要的十大技術之一。當成本這一始終阻礙RFID得到全面發展的問題在全球各國政府政策的支持下得到解決后,RFID得到了前所未有的廣泛發展和應用。在條形碼逐步被RFID標簽取代的今天,作為RFID系統核心組成部分的RFID閱讀器,有著極其廣泛的技術開發空間和市場前景。如何根據應用的需要,設計出性能良好、使用方便并且具有相當通用性的RFID閱讀器產品,是眾多企業和單位在應用中會遇到的課題。 本文首先簡單介紹了RFID基本原理和RFID閱讀器系統結構,然后結合工程項目的要求,介紹了一個基于ARM嵌入式平臺的便攜式RFID閱讀器的設計實現的實例。在設計和實現過程中,首先進行了系統需求和特點的分析,結合系統便攜化和功能復雜性方面的特點以及ARM嵌入式系統的優勢制定了系統方案并進行了功能模塊劃分。然后在此基礎上設計了各模塊的硬件電路,編寫了相應的驅動和測試程序。并且利用這些驅動和測試代碼在ADS環境下通過JTAG接口對電路進行了調試和功能驗證。接著采用802.11b/g方案對閱讀器進行了無線組網的設計。此后在硬件系統的基礎上,簡述了Linux嵌入式操作系統下閱讀器軟件的開發。文章最后還介紹了將所設計實現的樣機投入實際應用環境下的測試情況,詳細描述了測試的內容、方法和結果。 文章試圖通過對一個閱讀器開發實例的詳細介紹,提出一套完整的閱讀器設計思路和流程,為學習和開發人員提供幫助。

    標簽: RFID ARM 嵌入式平臺

    上傳時間: 2013-04-24

    上傳用戶:hmr0452

  • 基于ARM的TimeToCount輻射測量儀的研究

    隨著半導體工藝的飛速發展和芯片設計水平的不斷進步,ARM微處理器的性能得到大幅度地提高,同時其芯片的價格也在不斷下降,嵌入式系統以其獨有的優勢,己經廣泛地滲透到科學研究和日常生活的各個方面。 本文以ARM7 LPC2132處理器為核心,結合蓋革一彌勒計數管對Time-To-Count輻射測量方法進行研究。ARM結構是基于精簡指令集計算機(RISC)原理而設計的,其指令集和相關的譯碼機制比復雜指令集計算機要簡單得多,使用一個小的、廉價的ARM微處理器就可實現很高的指令吞吐量和實時的中斷響應。基于ARM7TDMI-S核的LPC2132微處理器,其工作頻率可達到60MHz,這對于Time-To-Count技術是非常有利的,而且利用LPC2132芯片的定時/計數器引腳捕獲功能,可以直接讀取TC中的計數值,也就是說不再需要調用中斷函數讀取TC值,從而大大降低了計數前雜質時間。本文是在我師兄呂軍的《Time-To-Count測量方法初步研究》基礎上,使用了高速的ARM芯片,對基于MCS-51的Time-To-Count輻射測量系統進行了改進,進一步論證了采用高速ARM處理器芯片可以極大的提高G-M計數器的測量范圍與測量精度。 首先,討論了傳統的蓋革-彌勒計數管探測射線強度的方法,并指出傳統的脈沖測量方法的不足。然后討論了什么是Time-To-Count測量方法,對Time-To-Count測量方法的理論基礎進行分析。指出Time-To-Count方法與傳統的脈沖計數方法的區別,以及采用Time-To-Count方法進行輻射測量的可行性。 接著,詳細論述基于ARM7 LPC2132處理器的Time-To-Count輻射測量儀的原理、功能、特點以及輻射測量儀的各部分接口電路設計及相關程序的編制。 最后得出結論,通過高速32位ARM處理器的使用,Time-To-Count輻射測量儀的精度和量程均得到很大的提高,對于Y射線總量測量,使用了ARM處理器的Time-To-Count輻射測量儀的量程約為20 u R/h到1R/h,數據線性程度也比以前的Time-To-CotJnt輻射測量儀要好。所以在使用Time-To-Count方法進行的輻射測量時,如何減少雜質時間以及如何提高計數前時間的測量精度,是決定Time-To-Count輻射測量儀性能的關鍵因素。實驗用三只相同型號的J33G-M計數管分別作為探測元件,在100U R/h到lR/h的輻射場中進行試驗.每個測量點測量5次取平均,得出隨著照射量率的增大,輻射強度R的測量值偏小且與輻射真實值之間的誤差也隨之增大。如果將測量誤差限定在10%的范圍內,則此儀器的量程范圍為20 u R/h至1R/h,量程跨度近六個數量級。而用J33型G-M計數管作常規的脈沖測量,量程范圍約為50 u R/h到5000 u R/h,充分體現了運用Time-To-Count方法測量輻射強度的優越性,也從另一個角度反應了隨著計數前時間的逐漸減小,雜質時間在其中的比重越來越大,對測量結果的影響也就越來越嚴重,盡可能的減小雜質時間在Time-To-Count方法輻射測量特別是測量高強度輻射中是關鍵的。筆者用示波器測出此輻射儀器的雜質時間約為6.5 u S,所以在計算定時器值的時候減去這個雜質時間,可以增加計數前時間的精確度。通過實驗得出,在標定儀器的K值時,應該在照射量率較低的條件下行,而測得的計數前時間是否精確則需要在照射量率較高的條件下通過儀器標定來檢驗。這是因為在照射量率較低時,計數前時間較大,雜質時間對測量結果的影響不明顯,數據線斜率較穩定,適宜于確定標定系數K值,而在照射量率較高時,計數前時間很小,雜質時間對測量結果的影響較大,可以明顯的在數據線上反映出來,從而可以很好的反應出儀器的性能與量程。實驗證明了Time-To-Count測量方法中最為關鍵的環節就是如何對計數前時間進行精確測量。經過對大量實驗數據的分析,得到計數前時間中的雜質時間可分為硬件雜質時間和軟件雜質時間,并以軟件雜質時間為主,通過對程序進行合理優化,軟件雜質時間可以通過程序的改進而減少,甚至可以用數學補償的方法來抵消,從而可以得到比較精確的計數前時間,以此得到較精確的輻射強度值。對于本輻射儀,用戶可以選擇不同的工作模式來進行測量,當輻射場較弱時,通常采用規定次數測量的方式,在輻射場較強時,應該選用定時測量的方式。因為,當輻射場較弱時,如果用規定次數測量的方式,會浪費很多時間來采集足夠的脈沖信號。當輻射場較強時,由于輻射粒子很多,產生脈沖的頻率就很高,規定次數的測量會加大測量誤差,當選用定時測量的方式時,由于時間的相對加長,所以記錄的粒子數就相對的增加,從而提高儀器的測量精度。通過調研國內外先進核輻射測量儀器的發展現狀,了解到了目前最新的核輻射總量測量技術一Time-To-Count理論及其應用情況。論證了該新技術的理論原理,根據此原理,結合高速處理器ARM7 LPC2132,對以G-計數管為探測元件的Time-To-Count輻射測量儀進行設計。論文以實驗的方法論證了Time-To-Count原理測量核輻射方法的科學性,該輻射儀的量程和精度均優于以前以脈沖計數為基礎理論的MCS-51核輻射測量儀。該輻射儀具有量程寬、精度高、易操作、用戶界面友好等優點。用戶可以定期的對儀器的標定,來減小由于電子元件的老化對低儀器性能參數造成的影響,通過Time-To-Count測量方法的使用,可以極大拓寬G-M計數管的量程。就儀器中使用的J33型G-M計數管而言,G-M計數管廠家參考線性測量范圍約為50 u R/h到5000 u R/h,而用了Time-To-Count測量方法后,結合高速微處理器ARM7 LPC2132,此核輻射測量儀的量程為20 u R/h至1R/h。在允許的誤差范圍內,核輻射儀的量程比以前基于MCS-51的輻射儀提高了近200倍,而且精度也比傳統的脈沖計數方法要高,測量結果的線性程度也比傳統的方法要好。G-M計數管的使用壽命被大大延長。 綜上所述,本文取得了如下成果:對國內外Time-To-Count方法的研究現狀進行分析,指出了Time-To-Count測量方法的基本原理,并對Time-T0-Count方法理論進行了分析,推導出了計數前時間和兩個相鄰輻射粒子時間間隔之間的關系,從數學的角度論證了Time-To-Count方法的科學性。詳細說明了基于ARM 7 LPC2132的Time-To-Count輻射測量儀的硬件設計、軟件編程的過程,通過高速微處理芯片LPC2132的使用,成功完成了對基于MCS-51單片機的Time-To-Count測量儀的改進。改進后的輻射儀器具有量程寬、精度高、易操作、用戶界面友好等特點。本論文根據實驗結果總結出了Time-To-Count技術中的幾點關鍵因素,如:處理器的頻率、計數前時間、雜質時間、采樣次數和測量時間等,重點分析了雜質時間的組成以及引入雜質時間的主要因素等,對國內核輻射測量儀的研究具有一定的指導意義。

    標簽: TimeToCount ARM 輻射測量儀

    上傳時間: 2013-06-24

    上傳用戶:pinksun9

  • ARM處理器和FPGA在數據傳輸中的應用與研究

    隨著對高處理能力、網絡通信、實時多任務,超低功耗這些需求的增長,傳統8位處理器已經不能滿足新產品的要求了,高端嵌入式處理器已經得到了普遍的重視和應用.ARM是目前嵌入式領域應用最廣泛的RISC微處理器結構,該文研究了基于ARM處理器的嵌入式系統的開發,介紹了利用一款ARM微處理器和FPGA設計的四路E1中繼板卡的硬件結構和工作原理,并在這個硬件平臺上進行軟件開發的過程.該四路E1收發器能夠提供四條E1鏈路,把帶寬從2Mbps提高到8Mbps,能夠同時負載120個用戶的通信,解決了數字環路系統中卡槽數目限制的問題.目前,建立在G. 703基礎上的El接口在分組網、幀中繼網、GSM移動基站及軍事通信中得到廣泛的應用,傳送語音信號、數據、圖像等業務.文中首先分析了當前數字環路系統的發展現狀和趨勢,隨著網絡通信的用戶數目及信息量的猛增,拓寬數據傳輸的通道是一項研究熱點,這是開發四路E1收發器的一個目的.接著敘述了數字環路系統的結構和工作原理,即四路E1收發器的應用環境,著重介紹了四路E1板卡在整個系統中所扮演的角色和嵌入式處理器ARM的體系結構和特點,鑒于數據傳輸中對時鐘的要求比較嚴格,該文還介紹了FPGA技術,應用它主要是為系統提供各個精確的時鐘.然后,在分析了四路E1收發器的工作原理和比較了各類處理器特點的基礎上,提出了四路E1收發器的硬件設計,分別介紹了時鐘模塊、系統接口電路、存儲系統模塊、四通道E1合成器模塊、CPU模塊以及時隙交換模塊.接著,在研究分析了G.703和G.704等通信協議后,再根據系統要求提出了四路E1收發器的軟件設計.先介紹了實時操作系統RTXC,詳細闡述了ARM處理器啟動代碼程序的設計,然后給出了在此操作系統下軟件設計的整體結構,分四個任務分別闡述此軟件功能,其中詳細介紹了信令處理模塊、接口中斷處理模塊、系統運行監測模塊和RC消息LC消息處理模塊.最后介紹了軟件和硬件的調試方法以及設計過程中的調試開發過程,整個系統設計完成后,經過反復調試、測驗已達到了預期的效果,現正投入使用中.

    標簽: FPGA ARM 處理器 中的應用

    上傳時間: 2013-04-24

    上傳用戶:夢雨軒膂

  • DVB信道編解碼算法研究與FPGA實現

    隨著人們對于數字視頻和數字圖像的需求越來越大,數字電視廣播和手機電視迅速發展起來,但是人們對于數字圖像質量的要求也越來越高。對于觀眾來講,畫面的質量幾乎是最為重要的,然而由于信道傳輸特性不理想和加性噪聲的影響,不可避免地會產生誤碼,導致圖像質量的下降,甚至無法正常收看。因此,為了保障圖像質量就需要采用糾錯編碼(又稱信道編碼)的方式來實現通信。在數字視頻廣播系統(DVB)中,無論是衛星傳輸,電纜傳輸還是地面傳輸都采用了信道編碼。 本文首先深入研究DVB標準中的信道編碼部分的關鍵技術;然后依照DVB-T標準技術要求,設計并硬件實現了數字視頻傳輸的信道編解碼系統。在該系統中,編解碼器與信源端的接口利用了MPEG-2的視頻傳輸接口同步并行接口(SPI),這種接口的應用讓系統具有很強的通用性;與信道端接口采用了G.703接口,具有G.703接口功能和特性的數據通信設備可以直接與數字通信設備連接,這使得應用時對于信道的選擇具有較大的靈活性。 在深入理解RS編解碼算法,卷積交織/解交織原理,卷積編碼/VITERBI譯碼算法原理的基礎上,本文給出了解碼部分的設計方案,并利用Xilinx公司的SpartanⅢ系列XC3S2000芯片完成方案的硬件實現。在RS解碼過程中引入了流水線機制,從而很大程度上提高了解碼效率。解交織器部分采用了RAM分區循環法,利用對RAM讀寫地址的控制實現解卷積交織,這種方法控制電路簡單,實現速度比較快,代價小。VITERBI譯碼器采用截尾譯碼,在幾乎不影響譯碼準確度的基礎上大大提高了解碼效率。

    標簽: FPGA DVB 信道 編解碼

    上傳時間: 2013-07-16

    上傳用戶:372825274

  • 基于FPGA的回波抵消器設計與實現

    回波抵消器在免提電話、無線產品、IP電話、ATM語音服務和電話會議等系統中,都有著重要的應用。在不同應用場合對回波抵消器的要求并不完全相同,本文主要研究應用于電話系統中的電回波抵消器。電回波是由于語音信號在電話網中傳輸時由于阻抗不匹配而產生的。 傳統回波抵消器主要是基于通用DSP處理器實現的,這種回波抵消器在系統實時性要求不高的場合能很好的滿足回波抵消的性能要求,但是在實時性要求較高的場合,其處理速度等性能方面已經不能滿足系統高速、實時的需要。現代大容量、高速度的FPGA的出現,克服了上訴方案的諸多不足。用FPGA來實現數字信號處理可以很好地解決并行性和速度問題,且其靈活的可配置特性使得FPGA構成的DSP系統非常易于修改、測試和硬件升級。 本文研究目標是如何在FPGA芯片上實現回波抵消器,完成的主要工作有: (1)深入研究了回波抵消器各模塊算法,包括自適應濾波算法、遠端檢測算法、雙講檢測算法、NLP算法、舒適噪聲產生算法,并實現了這些算法的C程序。 (2)深入研究了回波抵消器基于FPGA的設計流程與實現方法,并利用硬件描述語言Verilog HDL實現了各部分算法。 (3)在OuartusⅡ和ModelSim仿真環境下對該系統進行模塊級和系統級的功能仿真、時序仿真和驗證。并在FPGA硬件平臺上實現了該系統。 (4)根據ITU-T G.168的標準和建議,對設計進行了大量的主、客測試,各項測試結果均達到或優于G.168的要求。

    標簽: FPGA 回波抵消器

    上傳時間: 2013-06-23

    上傳用戶:123啊

  • 自適應回波消除器研究及其FPGA實現

    回波消除器廣泛應用于公用電話交換網(PSTN)、移動通信系統和視頻電話會議系統等多種語音通信領域。在PSTN系統中,由于線路阻抗不匹配,遠端語音信號通過混合線圈時產生一定泄漏,一部分信號又傳回遠端,產生線路回波,回波的存在會嚴重影響語音通信質量。本文主要針對線路回波進行研究,設計并實現了滿足實用要求的基于FPGA平臺的回波消除器。 首先,對回波產生原理和目前幾種常用回波消除算法進行了分析,在研究自適應回波消除器的各個模塊,特別是深入分析各種自適應濾波算法和雙講檢測算法,綜合考慮各種算法的運算復雜度和性能的情況下,這里采用NLMS算法實現自適應回波消除器。針對傳統雙講檢測算法在近端語音幅度較低情況下容易產生誤判的情況,給出一種基于子帶濾波器組的改進雙講檢測算法。 本文首先使用C語言實現回波消除器的各個模塊,其中包括自適應濾波器、遠端檢測、雙講檢測、非線性處理和舒適噪聲產生模塊。經過仿真測試,相關模塊算法能夠有效提高回波消除器性能。在此基礎上,本文使用硬件描述語言Veillog HDL,在QuartusⅡ和ModelSim軟件平臺上實現各功能模塊,并通過模塊級和系統級功能仿真以及時序仿真驗證,最終在現場可編程門陣列(Field Programmable Gate Arrav,FPGA)平臺上實現回波消除系統。本文詳細闡述了基于FPGA的設計流程與設計方法,并描述了自適應濾波器、基于分布式算法FIR濾波器、除法器和有限狀態機的設計過程。 根據ITU-T G.168標準提出的測試要求,本文塒基于FPGA設計實現的自適應回波消除系統進行大量主客觀測試。經過測試,各項性能指標均達到或超過G.168標準的要求,具有良好的回波消除效果。

    標簽: FPGA 回波 消除器

    上傳時間: 2013-06-18

    上傳用戶:qwe1234

  • 太陽能熱水器智能控制系統的程序g.rar

    本程序是一個太陽能熱水器智能控制系統的程序。它以89C52單片機為核心,配合電阻型4檔水位傳感器、負溫度系數NTC熱敏電阻溫度傳感器、8255A擴展鍵盤和顯示器件、驅動電路(電磁閥、電加熱、報警)等外圍器件, 完成對太陽能熱水器容器內的水位、水溫測量、顯示;時間顯示;缺水時自動上水,水溢報警;手動上水、參數設置;定時水溫過低智能電加熱等功能。 其中本文第一章主要說明了太陽能熱水器智能控制系統的研究現狀和本課題的主要任務,第二章對系統的整體結構作了簡單介紹,第三章重點介紹了水位水溫測量電路,第四章介紹了時鐘電路,第五章介紹了顯示和鍵盤電路,第六章對其他電路作了介紹,第七章是對水位測量電路的硬件調試。 本系統對于水位傳感器、水溫傳感器的電阻數據的處理均采用獨特的RC充放電的方法。它與使用A/D轉換器相比,電路簡單、制造成本低。特別適用于對水位、水溫要求不精確的場合。

    標簽: 太陽能熱水器 智能控制系統 程序

    上傳時間: 2013-06-17

    上傳用戶:rhl123

  • 硬件工程師手冊

    目 錄 第一章 概述 3 第一節 硬件開發過程簡介 3 §1.1.1 硬件開發的基本過程 4 §1.1.2 硬件開發的規范化 4 第二節 硬件工程師職責與基本技能 4 §1.2.1 硬件工程師職責 4 §1.2.1 硬件工程師基本素質與技術 5 第二章 硬件開發規范化管理 5 第一節 硬件開發流程 5 §3.1.1 硬件開發流程文件介紹 5 §3.2.2 硬件開發流程詳解 6 第二節 硬件開發文檔規范 9 §2.2.1 硬件開發文檔規范文件介紹 9 §2.2.2 硬件開發文檔編制規范詳解 10 第三節 與硬件開發相關的流程文件介紹 11 §3.3.1 項目立項流程: 11 §3.3.2 項目實施管理流程: 12 §3.3.3 軟件開發流程: 12 §3.3.4 系統測試工作流程: 12 §3.3.5 中試接口流程 12 §3.3.6 內部驗收流程 13 第三章 硬件EMC設計規范 13 第一節 CAD輔助設計 14 第二節 可編程器件的使用 19 §3.2.1 FPGA產品性能和技術參數 19 §3.2.2 FPGA的開發工具的使用: 22 §3.2.3 EPLD產品性能和技術參數 23 §3.2.4 MAX + PLUS II開發工具 26 §3.2.5 VHDL語音 33 第三節 常用的接口及總線設計 42 §3.3.1 接口標準: 42 §3.3.2 串口設計: 43 §3.3.3 并口設計及總線設計: 44 §3.3.4 RS-232接口總線 44 §3.3.5 RS-422和RS-423標準接口聯接方法 45 §3.3.6 RS-485標準接口與聯接方法 45 §3.3.7 20mA電流環路串行接口與聯接方法 47 第四節 單板硬件設計指南 48 §3.4.1 電源濾波: 48 §3.4.2 帶電插拔座: 48 §3.4.3 上下拉電阻: 49 §3.4.4 ID的標準電路 49 §3.4.5 高速時鐘線設計 50 §3.4.6 接口驅動及支持芯片 51 §3.4.7 復位電路 51 §3.4.8 Watchdog電路 52 §3.4.9 單板調試端口設計及常用儀器 53 第五節 邏輯電平設計與轉換 54 §3.5.1 TTL、ECL、PECL、CMOS標準 54 §3.5.2 TTL、ECL、MOS互連與電平轉換 66 第六節 母板設計指南 67 §3.6.1 公司常用母板簡介 67 §3.6.2 高速傳線理論與設計 70 §3.6.3 總線阻抗匹配、總線驅動與端接 76 §3.6.4 布線策略與電磁干擾 79 第七節 單板軟件開發 81 §3.7.1 常用CPU介紹 81 §3.7.2 開發環境 82 §3.7.3 單板軟件調試 82 §3.7.4 編程規范 82 第八節 硬件整體設計 88 §3.8.1 接地設計 88 §3.8.2 電源設計 91 第九節 時鐘、同步與時鐘分配 95 §3.9.1 時鐘信號的作用 95 §3.9.2 時鐘原理、性能指標、測試 102 第十節 DSP技術 108 §3.10.1 DSP概述 108 §3.10.2 DSP的特點與應用 109 §3.10.3 TMS320 C54X DSP硬件結構 110 §3.10.4 TMS320C54X的軟件編程 114 第四章 常用通信協議及標準 120 第一節 國際標準化組織 120 §4.1.1 ISO 120 §4.1.2 CCITT及ITU-T 121 §4.1.3 IEEE 121 §4.1.4 ETSI 121 §4.1.5 ANSI 122 §4.1.6 TIA/EIA 122 §4.1.7 Bellcore 122 第二節 硬件開發常用通信標準 122 §4.2.1 ISO開放系統互聯模型 122 §4.2.2 CCITT G系列建議 123 §4.2.3 I系列標準 125 §4.2.4 V系列標準 125 §4.2.5 TIA/EIA 系列接口標準 128 §4.2.5 CCITT X系列建議 130 參考文獻 132 第五章 物料選型與申購 132 第一節 物料選型的基本原則 132 第二節 IC的選型 134 第三節 阻容器件的選型 137 第四節 光器件的選用 141 第五節 物料申購流程 144 第六節 接觸供應商須知 145 第七節 MRPII及BOM基礎和使用 146

    標簽: 硬件工程師

    上傳時間: 2013-05-28

    上傳用戶:pscsmon

  • MPEG4音頻視頻壓縮編碼(含G.711/ACC/H.261等)

    ·文件列表:   mp4live   .......\audio_alsa_source.cpp   .......\audio_alsa_source.h   .......\audio_encoder.cpp   .......\audio_encoder.h   .......\audio_encoder_base.cpp

    標簽: MPEG4 711 261 ACC

    上傳時間: 2013-07-17

    上傳用戶:13913148949

  • ITU-T發布的音頻編解碼協議G.723.1源碼

    ·文件列表(點擊判斷是否您需要的文件):   LBCCODEC.H   LPC.C   LPC.H   LSP.C   LSP.H   TAB_LBC.C   TAB_LBC.H   TAME.C   TAME.H   TYPEDEF.H   UTIL_CNG.C   UTIL_C

    標簽: ITU-T 723.1 發布 協議

    上傳時間: 2013-07-03

    上傳用戶:eclipse

主站蜘蛛池模板: 安岳县| 富川| 乌海市| 保定市| 天门市| 崇义县| 纳雍县| 岢岚县| 文安县| 罗城| 赞皇县| 辰溪县| 安塞县| 平阴县| 嵩明县| 集贤县| 澄迈县| 黄石市| 乌什县| 云梦县| 谷城县| 林甸县| 永川市| 绥芬河市| 高阳县| 三原县| 都兰县| 水城县| 玛纳斯县| 瑞金市| 措美县| 林甸县| 神池县| 新龙县| 渝北区| 科尔| 长宁县| 遂川县| 巴林右旗| 宿州市| 新晃|